Неразрушающие методы определения прочности бетона
Прочность бетона при применении неразрушающих методов определяют по предварительно установленным градуировочным зависимостям между прочностью образцов на сжатие и косвенными характеристиками прочности. Различают механические и физические неразрушающие методы (рис. 2.21). Механические методы основаны на корреляционных связях между прочностью и другими механическими характеристиками бетона (твердостью, упругостью, способностью к пластическим деформациям и др.), а также усилиями, вызывающими его местные разрушения. При физических методах используют корреляционные связи прочности бетона со скоростью распространения в нем ультразвуковых волн и некоторыми другими физическими характеристиками (частотой колебаний, интенсивностью гамма-облучения при прохождении сквозь бетон и др.). Из физических методов на практике, в основном, применяется ультразвуковой метод
Согласно ГОСТ 22690-88 косвенными характеристиками прочности при применении механических неразрушающих методов могут быть:
- – значение отскока бойка от поверхности бетона (или прижатого к ней ударника);
- – параметр ударного импульса (энергия удара);
- – размеры отпечатка на бетоне (диаметр, глубина и т.д.) или соотношение диаметров отпечатков на бетоне и стандартном образце при ударе или вдавливании индентора в поверхность бетона;
- – значение напряжения, необходимого для местного разрушения бетона при отрыве приклеенного к нему металлического диска;
- – значение усилия, необходимого для скалывания участка бетона на ребре конструкции;
– значение усилия местного разрушения бетона при вырывании из него анкерного устройства.
Рис. 2.21. Классификация методов неразрушающего контроля
Механические методы неразрушающего контроля применяют для определения всех видов нормируемой прочности, а также при приеме конструкций и их обследовании. Область применения того или иного метода зависит от предельных значений измеряемой прочности (табл. 2.13).
Испытания проводят при положительной температуре бетона. Допускается при обследовании конструкций определять прочность при отрицательной температуре, но не ниже минус 10°С при условии, что к моменту замораживания конструкция находилась не менее одной недели при положительной температуре и относительной влажности воздуха не более 75%.
Предельные значения прочности бетона при применении механических неразрушающих методов_
Предельные значения прочности бетона, МПа
Упругий отскок и пластическая деформация
Отрыв со скалыванием
При контроле отпускной или передаточной прочности бетона сборных конструкций неразрушающими методами от партии отбирают 10% конструкций, но не меньше трех. Для определения прочности бетона монолитных конструкций в промежуточном возрасте контролируют не менее одной конструкции из объема бетона, уложенного на протяжении суток (или части конструкции в случае, когда ее бетонирование выполнялось больше одних суток). На каждой
Рис. 2.22. Молоток Шмидта
сборной конструкции, отобранной для определения прочности бетона неразрушающими методами, выбирают не менее двух, а для монолитной – не менее четырех контрольных участков. Участок должен иметь площадь от 100 до 600 см 2 . Количество и расположение контрольных участков определяет проектная организация в рабочих чертежах конструкций в зависимости от геометрических размеров, назначения и технологии их изготовления, их должно быть не менее:
- – для линейных конструкций – один участок на 4 м длины;
- – для плоских конструкций, за исключением монолитных конструкций сплошных стен – один участок на 4 м 2 площади;
- – для монолитных конструкций сплошных стен – один участок на 8 м 2 площади.
Принцип действия приборов по методу упругого отскока – склерометров (молотки Шмидта, рис. 2.22) заключается в том, что специальным ударником наносится удар по сферическому штампу, прижатому к бетону. Размер отскока ударника характеризует твердость бетона, в зависимости от которой с помощью градуировочной кривой рассчитывают прочность при сжатии.
Рис. 2.23. Прибор ИПС-МГ
В приборах, где реализуется метод ударного импульса (ИПС-МГ, Оникс-2,5 и др.), регистрируется энергия, которая возникает в момент удара бойка по поверхности бетона (рис. 2.23). Электронный блок, содержащийся в этих приборах, по параметрам ударного импульса, поступающим от склерометра, оценивает твердость и упруго-пластические свойства материала и устанавливает соответствующий класс бетона по прочности.
При использовании приборов, работающих по методу пластических деформаций (молоток К.П. Кашкарова, приборы ДПГ-4, ДПГ-5 и др.) (рис.2.24), измеряют диаметр отпечатка на бетонной поверхности при вдавливании индентора (штампа) под действием нагрузки. Вдавливание штампа происходит под действием удара, который осуществляется с помощью специальной пружины, свободного падения маятника и т.д. В качестве бойка обычно применяют сферические наконечники определенного диаметра, которые образуют на поверхности бетона отпечатки сферической формы. Диаметр отпечатка должен составлять от 20 до 70% диаметра индентора. Наиболее точные результаты по этому методу достигаются, если при ударе получают два отпечатка – на бетоне (d6) и на эталоне (d3), в качестве которого применяют стальной стержень с известным показателем твердости. Прочность бетона определяют по градуировочной кривой в зависимости от отношения d6 / d3 (рис. 2.24).
При использовании методов отрыва, отрыва со скалыванием и скалывания ребра (методы местных разрушений) применяют гидравлические прессы – насосы (ГПНВ-5, ГПНС-4 и др.) (рис. 2.25), способные с помощью поршня, перемещаемого под давлением в рабочем цилиндре, создавать необходимые усилия.
При применении метода отрыва на предварительно зачищенную поверхность бетона эпоксидным клеем приклеивают стальной диск, имеющий с одной стороны стержень с винтовой нарезкой. При отрыве вместе с диском отрывается часть бетона. Для определения прочности бетона на сжатие измеряют величину условного напряжения в бетоне при отрыве:
де F – вырывное усилие; Рв – площадь проекции поверхности отрыва бетона на площадь диска.
Рис. 2.24. Молоток конструкции К.П. Кашкарова: а – общий вид; б -градуировочный график; 1 – корпус; 2 – стакан; 3 – головка; 4 – пружина; 5 – шарик; 6 – стержень; d6 – диаметр отпечатка на бетоне; с!э – диаметр отпечатка на эталоне
Результаты испытаний не учитывают, если при отрыве бетона была обнажена арматура или площадь проекции поверхности отрыва составила менее 80% площади диска.
Метод отрыва со скалыванием основан на зависимости между прочностью бетона на сжатие и усилием, которое необходимо для вырывания из бетона специального анкерного устройства. Применяют три типа анкеров (рис. 2.25): тип I – устанавливают на конструкции при бетонировании, типы II и III – устанавливают в предварительно подготовленные шпуры на конструкции.
Во время испытаний рабочий поршень гидравлических пресс- насосов под действием определенного давления в цилиндре передает на анкерное устройство необходимое вырывное усилие.
При применении анкерных устройств, прочность бетона R6, МПа можно вычислять с помощью градуировочной зависимости по формуле:
где mi – коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырыва и принимаемый равным 1 при крупности менее 50 мм и 1,1 при крупности 50 мм и более; m2 – коэффициент пропорциональности для перехода от усилия вырыва, кН, к прочности бетона, МПа; Р – усилие вырыва анкерного устройства, кН.
При испытании тяжелого бетона прочностью 10 МПа и более и керамзитобетона прочностью от 5 МПа до 40 МПа значения коэффициента пропорциональности ш2 принимают по ГОСТ 22690-88. Он зависит от условий твердения бетона, типа анкерного устройства, глубины его заложения, вида бетона.
Метод скалывания ребра базируется на измерении усилия скалывания бетона в ребре конструкции. Испытательное оборудование для реализации этого метода включает прибор типа ГПНВ-5 или ГПНС-4 с силоизмерителем и дополнительное устройство УРС (рис. 2.26). После закрепления на конструкции этого устройства на него передают усилие до момента скалывания части ребра.
Прочность бетона по данному методу определяется по формуле:
где m – коэффициент, учитывающий максимальный размер крупного заполнителя и принимаемый равным 1 при крупности заполнителя менее 20 мм; 1,05 при крупности заполнителя от 20 до 30 мм и 1,1 при крупности заполнителя от 30 до 40 мм; Р – усилие скалывания, кН.
Рис. 2.25. Типы анкерных устройств:
1 – рабочий стержень; 2 – рабочий стержень с разжимным конусом; 3 – рабочий стержень с полным разжимным конусом; 4 – опорный стержень; 5 – сегментные рифленые щеки
Рис. 2.26 Прибор для испытания прочности бетона методом скалывания ребра: 1 – конструкция; 2 – скалываемый бетон; 3 – приспособление УРС; 4 – прибор ГПНС-4
При применении методов ударного импульса и пластической деформации расстояние от мест проведения испытания до арматуры должно быть не менее 50 мм. Приборы располагают так, чтобы усилия прикладывались перпендикулярно испытываемой поверхности. При испытании методами отрыва, отрыва со скалыванием и скалыванием ребра контролируемые участки конструкции должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.
Число испытаний на контролируемом участке и другие условия, которые нормируются в зависимости от метода неразрушающего контроля, приведены в табл. 2.14.
На точность измерения прочности бетона неразрушающими методами могут влиять такие факторы как состав цемента, тип заполнителя, условия твердения, возраст бетона, влажность и температура поверхности, карбонизация поверхностного слоя бетона и др.
Наиболее точными из методов неразрушающего контроля прочности бетона являются методы местных разрушений. Недостатками этих методов являются повышенная трудоемкость, невозможность применения в густоармированных конструкциях, частичные повреждения поверхности конструкций. Приборы, основанные на методах местных разрушений, применяются преимущественно в монолитном домостроении и при обследовании конструкций зданий и сооружений.
Условия испытаний прочности бетона
Число испытаний на участке
Расстояние между контрольными точками, мм
Расстояние от края конструкции до контрольной точки, мм
Технологии и приборы для неразрушающего исследования бетона
Определение показателя прочности на усилие сжатия производится путем расчета по формулам и графикам, указанным в ГОСТ 22690-88, а также с использованием графиков прилагаемых производителями приборов. И в ГОСТе, и в графиках производителя указываются градуировочные зависимости между самим параметром прочности и его косвенным значением.
Получение показаний приборами производится при исследовании самой строительной конструкции. Кроме этого, могут проводиться и испытания полученных из конструкции проб. Это необходимо для получения показаний прочности на сложно доступных участках, а также при отрицательных температурах наружной среды. Полученные пробы заливаются бетонным раствором прочностью не менее 50% от прочности пробы. Для этого удобно использовать типовые формы согласно ГОСТ 10180-2012. Порядок размещения проб после заливки указан на рис.1.
Рис.1. 1 – проба бетона; 2 – наиболее удобная для испытания сторона пробы; 3 – раствор, в котором закреплена проба
Как уже говорилось выше, приборы для проведения неразрушающего контроля имеют собственные графики градуировочной зависимости или базовые настройки для исследований тяжелого бетона средних марок.
Для получения показаний прочности конструкций возможно использование технологий упругого отскока, ударного импульса или пластической деформации. Получение точного значения производится с помощью градуировочной зависимости определенной для бетона, разнящегося с испытываемым своим составом, условиями застывания, возрастом или влажностью. Уточнение значений производится по методике указанной в пр. 9. ГОСТ 22690-88.
Для определения показателей прочности ультразвуковым способом необходима градуировка и корректировка данных полученных прибором согласно ГОСТ 17624 и ГОСТ 24332. В таблице 1 приведены данные расстояний между точками испытаний и количество испытаний для различных методик неразрушающего контроля.
Таблица 1
Наименование метода
Число испытаний на участке
Расстояние между местами испытаний, мм
Расстояние от края конструкции до места испытаний, мм
Толщина конструкции
2 диаметра диска
Отрыв со скалыванием
5 глубин вырыва
Удвоенная глубина установки анкера
Испытание методом упругого отскока
Методика определения прочности конструкции требует расстояния между точками приложения усилий и арматурой не менее 50 мм. Процесс испытания состоит из следующих этапов:
- Размещение прибора на поверхности конструкции таким образом, чтобы направление усилия шло под углом 90°.
- Относительно горизонтали прибор располагается таким же образом, как и при испытании образцов для определения градуировки. Если выбирается иная точка установки, то необходимо внесение поправок в соответствии с рекомендациями производителя прибора.
- Определяется косвенная характеристика.
- Производится расчет косвенной характеристики на участке конструкции.
Определение прочности на усилие сжатия прибором “Склерометр – Schmidt тип N”
Склерометр – это прибор для замера показаний прочности бетона и бетонного раствора с посредством методики упругого отскока в соответствии с требованиями ГОСТ 22690-88. Границы замеров для данной методики составляют от 5 до 50 МПа (для марок М50 – М500).
Прибор состоит из ударного механизма и стрелки-индикатора, помещенных в корпус цилиндрической формы. Замер проводится приведением в действие ударного механизма. Величина отскока бойка прибора фиксируется стрелкой. Полученный показатель твердости при ударе переводится в показатель прочности с помощью графика, прилагаемого к склерометру. График составлен на основании сопоставления показаний разрушающих измерений на пробах кубической формы путем раздавливания в прессе и испытаний склерометром.
Отрыв со скалыванием
Для проведений испытаний по методике отрыва со скалыванием точки закладки анкеров должны располагаться в зонах минимального напряжения от действующих на конструкцию нагрузок или минимального усилия обжатия предварительно напряженной арматуры.
Процесс замера состоит из следующих этапов:
- Если лепестковый анкер не был заложен до бетонирования, то проводится бурение отверстия или пробивка шпура размером и глубиной соответствующим требованиям используемого прибора.
- Анкерное устройство крепится в отверстии или шпуре.
- Производится соединение прибора и заложенного анкера.
- Приводится в действие прибор, начиная с минимальной нагрузки на отрыв с последующим увеличением со скоростью от 1,5 до 3 кН/с.
- После отрыва фиксируются показатели приложенного усилия и минимальная с максимальной глубины скалывания. Точность замера глубин должна составлять не менее 1 мм.
Таким способом определяется точный показатель прочности бетона за исключением случаев:
- если разница максимальной и минимальной величин скалывания между границами разрушения и поверхностью разнятся более чем в 2 раза;
- разница между глубинами вырыва и заделки отличается более чем на 5%.
При указанных выше факторах применение итогов допускается только для примерной оценки.
Рекомендуется применение анкерных устройств в соответствии с приложением 2. ГОСТ 22690-88 для которых определена следующая градуировочная зависимость (пр. 5.).
ПРИЛОЖЕНИЕ
В случае применения согласно ГОСТ 22690-88 анкерных устройств, показатель прочности бетона R, МПа определяется по формуле перевода разрушающего усилия (Р) полученного в ходе испытаний к прочности на сжатие:
m1 – коэффициент учета предельного размера большого заполнителя. Принимается равным 1 при крупности до 50 мм, 1.1 – при крупности от 50 мм.;
m2 – коэффициент перевода к прочности на сжатие, находится в зависимости от марки бетона и обстоятельств его затвердевания.
При замерах тяжелого бетона прочностью от 10 МПа и керамзитового бетона прочностью от 5 – 40 МПа показатель m2 принимается равным в соответствии с таблицей 2
Таблица 2
Условие твердения бетона
Тип анкерного устройства
Предполагаемая прочность бетона, МПа
Глубина заделки анкерного устройства, мм
Значение коэффициента m2 для бетона
тяжелого
легкого
Прибор для замера показателя прочности бетона методом отрыва со скалыванием «Оникс-ОС»
Для проведения замеров необходим участок ровной поверхности размером 200х200 мм. В центре участка пробивается или пробуривается (шлямбургом или электромеханическим инструментом) отверстие глубиной 55×10-3 м строго перпендикулярно поверхности конструкции с отклонением не более 1 градуса.
Процесс измерения состоит из следующих этапов:
- В отверстие соответствующее вышеуказанным параметрам закладывается анкер, состоящий из конуса и трех сегментов.
- Закручивается гайка-тяга с усилием необходимым для предотвращения проскальзывания анкера.
- Опора устройства до упора закручивается в рабочий цилиндр.
- Винт насоса устанавливается в верхнее положение.
- Устройство подсоединяется к гайке-тяге.
- Опора вкручивается до плотного соприкосновения с поверхностью конструкции.
- Анкерное устройство вырывается путем вращения ручки насоса.
- Определяется разрушающее усилие визуальным методом по показаниям давления на манометре. Точность должна составлять до 2,5 кгс/см2.
Очень важно чтобы при проведении испытаний не производилось проскальзывание анкерной конструкции. Итоги замера не учитываются при проскальзывании более 5х10-3 м. Не допустимо повторное использование отверстия т. к. это может привести к некорректным результатам.
Определение глубины скалывания определяется с помощью двух линеек. Первая располагается ребром на испытуемой поверхности, второй определяется глубина.
Ультразвуковой метод определения прочности бетона
Определение прочностных показателей бетона ультразвуковым методом производится на основании существующих зависимостей между скоростью распространения звуковых волн и прочность материала. Для этого используются специальные градуировочные зависимости между скоростью ультразвука и прочностью или между временем распространения и прочностью. Выбор зависимости основан на технологии ультразвукового сканирования.
Для ультразвукового исследования используются методики сквозного или поверхностного прозвучивания. Для сборных строительных конструкций, таких как колоны, ригели, балки и т. д. применяется сквозная методика ультразвукового сканирования с направлением волн в поперечном направлении. При наличии затруднений со сквозным сканированием в силу конструктивных особенностей, а также для стеновых панелей, ребристых плоских панелей и др. плоских стройконструкций применяется поверхностное сканирование. База прозвучивания устанавливается как и на пробах при установке градуировочной зависимости.
Между поверхностями прибора и стройконструкций обеспечивается плотный акустический контакт с помощью технического вазелина и др. вязких материалов. От выбора методики прозвучивания зависит определение градуировочной зависимости. При сквозном определяется зависимость прочности от скорости прохождения звуковой волны, при поверхностном – зависимость прочности от времени её прохождения. При поверхностном сканировании возможно использование соотношения «скорость-прочность» с применением коэффициента перехода (пр. 3.).
Время прохождения звуковой волны через материал определяется при направлении под прямым углом к уплотнению при расстоянии от 30 и более мм от края исследуемой поверхности строительной конструкции. Также обязательным является направление волны под прямым углом к заложенной в конструкции арматуре при её концентрации в зоне исследований не более 5% от объёма железобетона. Возможно направление волны параллельно арматуре при расстоянии от арматуры не меньше чем 60% от длины базы.
Пульсар 1.2
Рис. 2. Внешний вид прибора Пульсар-1.2: 1 – вход приемника; 2 – выход излучателя
В состав прибора Пульсар (рис. 2.) входит электронный блок и ультразвуковые преобразователи. Последние могут быть раздельными или объединенными в единый блок. Электронный блок оснащен клавиатурой и дисплеем, имеются разъёмы для подключения блока поверхностного сканирования или отдельных ультразвуковых преобразователей для сквозного сканирования. Прибор также оснащен USB-разъёмом для подключения к информационно-вычислительным системам. Доступ к автономным источникам питания производится через крышку в нижней части.
Функции прибора основана на замере времени преодоления ультразвукового импульса через исследуемый материал от излучателя к приемнику. Скорость (V) прохождения волны определяется по формуле:
N – расстояние от излучателя до приемника;
t – время прохождения волны.
Максимально точный показатель определяется как результат обработки данных после шести измерений. Проводится от 1 до 10 измерений с определением среднего значения, а также с учетом двух коэффициентов – вариации и неоднородности.
Скорость прохождения ультразвуковой волны через исследуемый бетон зависит от показателей:
- плотность и упругость;
- присутствие либо отсутствие дефектов (трещин и пустот), от которых зависят прочностные свойства и качество материала.
Исходя из этого, сканируя ультразвуком элементы стройконструкций возможно получение информации о:
- прочностных показателях;
- монолитности структуры;
- параметрах модулей плотности и упругости;
- наличии/отсутствии изъянов, а также об их местонахождении и конфигурации;
- форме А-сигнала.
Возможно проведение исследований с применением смазки и посредством сухого контакта см. рис. 3.
Рис. 3. Варианты прозвучивания
Прибор «Пульсар» производит фиксацию и визуализацию ультразвуковых импульсов, оснащен цифровыми и аналоговыми фильтрами для отсеивания помех. При работе в режиме осциллографа есть возможность визуального наблюдения за сигналами на дисплее, оператор может самостоятельно устанавливать курсор в положение контрольной метки первого вступления, изменять увеличение измерительного тракта, сдвигать ось времени для изучения импульсов первого вступления и огибающей.
Оформление полученных данных прочности конструкций методами неразрушающего контроля
Итоги проведенных испытаний заносятся в журнал в котором указываются:
- название стройконструкции, номер исследуемой партии;
- вид исследуемой прочности и ее необходимый параметр;
- параметры бетона;
- наименование применяемой методики исследований, модель используемого прибора и его заводской номер;
- средний косвенный показатель прочности и должное значение прочности материала;
- данные об применении корректирующих коэффициентов;
- итоговые показатели прочности;
- данные о лицах проводившие испытания и их подпись, дата проведения испытаний.
Для определения прочности ультразвуковым методом необходимо использовать форму, указанную в пр. №8-9, ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ»
Ударно-импульсный метод определения прочности бетона
Установление марки бетона посредством технологии ударно-импульсного исследования производится прибором ИПС-МГ4.01 в соответствии с требованиями ГОСТ 22690-88.
Технические характеристики прибора ИПС-МГ4.01:
Пределы замеров прочности, МПа
Величина погрешности замера, %
Количество сохраняемых в памяти прибора показаний замеров
Бетоны. Определение прочности механическими методами неразрушающего контроля
Стандарт распространяется на тяжелый и легкий бетоны и устанавливает методы определения прочности на сжатие в конструкциях по упругому отскоку, ударному импульсу, пластической деформации, отрыву, скалыванию ребра и отрыву со скалыванием.
МЕЖГОСУДАРСТВЕН НЫЙ СТАНДАРТ
ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ МЕХАНИЧЕСКИМИ
МЕТОДАМИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
Москва
Стандартинформ
МЕЖГОСУДАРСТВЕН НЫЙ СТАНДАРТ
Определение прочности механическими
методами неразрушающего контроля
Concretes. Determination of strength by mechanical methods
of nondestructive testing
Дата введения 01 .01.91
Настоящий стандарт распространяется на тяжелый и легкий бетоны и устанавливает методы определения прочности на сжатие в конструкциях по упругому отскоку, ударному импульсу, пластической деформации, отрыву, скалыванию ребра и отрыву со скалыванием.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.2. В зависимости от применяемого метода косвенными характеристиками прочности являются:
– значение отскока бойка от поверхности бетона (или прижатого к ней ударника);
– параметр ударного импульса (энергия удара);
– размеры отпечатка на бетоне (диаметр, глубина и т. п.) или соотношение диаметров отпечатков на бетоне и стандартном образце при ударе индентора или вдавливании индентора в поверхность бетона;
– значение напряжения, необходимого для местного разрушения бетона при отрыве приклеенного к нему металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска;
– значение усилия, необходимого для скалывания участка бетона на ребре конструкции;
– значение усилия местного разрушения бетона при вырыве из него анкерного устройства.
* На территории Российской Федерации действует ГОСТ Р 53231-2008 (здесь и далее).
Метод испытания следует выбирать с учетом предельных значений прочности, рекомендуемых руководствами к конкретным приборам неразрушающего контроля, в соответствии с требованиями разд. 3 настоящего стандарта.
1.4. Испытания проводят при положительной температуре бетона. Допускается при обследовании конструкций определять прочность при отрицательной температуре, но не ниже минус 10 °С при условии, что к моменту замораживания конструкция находилась не менее одной недели при положительной температуре и относительной влажности воздуха не более 75 %.
2. АППАРАТУРА И ИНСТРУМЕНТ
* На территории Российской Федерации действуют ПР 50.2.009-94.
Типы приборов и их технические характеристики приведены в приложении 1.
** Табл. 1. (Исключена, Поправка ).
Характеристика приборов для метода
отрыва со скалыванием
Твердость ударника, бойка или индентора HRCэ, не менее
Шероховатость контактной части ударника или индентора, мкм, не более
Диаметр ударника или индентора, мм, не менее
Толщина кромок дискового индентора, мм, не менее
Угол конического индентора
Диаметр отпечатка, %, от диаметра индентора
Допуск перпендикулярности при приложении нагрузки на высоте 100 мм, мм
Энергия удара, Дж, не менее
Скорость увеличения нагрузки, кН/с
Погрешность измерения нагрузки от измеряемой нагрузки, %, не более
* При вдавливании индентора в поверхность бетона.
2.2. Инструмент для измерения диаметра или глубины отпечатков (угловой масштаб по ГОСТ 427 , штангенциркуль по ГОСТ 166 и др.), используемый для метода пластических деформаций, должен обеспечивать измерения с погрешностью не более ±0,1 мм, а инструмент для измерения глубины отпечатка (индикатор часового типа по ГОСТ 577 и др.) – с погрешностью не более ±0,01 мм.
2.3. Для метода отрыва со скалыванием следует применять анкерные устройства по приложению 2.
Допускается применять также другие анкерные устройства, глубина заделки которых должна быть не менее максимального размера крупного заполнителя бетона испытуемой конструкции.
2.4. Для метода скалывания ребра следует использовать приборы по приложению 3.
2.5. Для метода отрыва следует использовать стальные диски диаметром не менее 40 мм, толщиной не менее 6 мм и не менее 0,1 диаметра, с параметром шероховатости приклеиваемой поверхности не менее Ra 20 мкм по ГОСТ 2789 . Клей для приклейки диска должен обеспечивать прочность, при которой разрушение происходит по бетону. Допускается использовать клеи, приведенные в приложении 4 .
3. ПОДГОТОВКА К ИСПЫТАНИЯМ
3.1. Для определения прочности бетона в конструкциях предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы).
Для метода отрыва со скалыванием, в случае применения анкерных устройств в соответствии с приложением 2, и для метода скалывания ребра, в случае применения приборов в соответствии с приложением 3, допускается использовать градуировочные зависимости, приведенные в приложениях 5 и 6 соответственно.
3.3. Градуировочную зависимость устанавливают заново при изменении вида крупного заполнителя, технологии производства бетона, при введении добавок, а для методов отскока, ударного импульса и пластической деформации – также при изменении вида цемента, внесении количественных изменений в номинальный состав бетона, превышающих по расходу цемента ±20 %, крупного заполнителя ±10 %.
3.4. Для установления градуировочных зависимостей используют не менее 15 серий образцов-кубов по ГОСТ 10180 или не менее 30 отдельных образцов-кубов. При установлении градуировочной зависимости для метода отрыва со скалыванием в каждую серию дополнительно включают не менее трех образцов-кубов.
Образцы изготавливают в соответствии с ГОСТ 10180 в разные смены в течение не менее 5 су т из бетона одного состава, одной и той же технологии и при том же режиме тепловлажностной обработки или тех же условиях твердения, что и конструкции, подлежащие контролю. При изготовлении образцов пять серий рекомендуется изготавливать из бетонной смеси, отличающейся по составу от проектного по цементно-водному отношению в пределах плюс 0,4, и пять серий в пределах минус 0,4.
3.5. Размеры образцов для установления градуировочной зависимости следует выбирать в соответствии с наибольшей крупностью заполнителя в бетонной смеси по ГОСТ 10180 , но не менее:
– 100×100×100 мм – для методов отскока, ударного импульса, пластической деформации для испытания неразрушающими методами и по ГОСТ 10180 и отрыва со скалыванием для испытания по ГОСТ 10180 ;
– 200×200×200 мм – для методов отрыва и скалывания ребра конструкции.
Размеры ребра дополнительных образцов-кубов, испытываемых методом отрыва со скалыванием, должны быть не меньше шести глубин установки анкерного устройства.
В случае применения на производстве способов и режимов уплотнения, приводящих к изменению структуры бетона, размер и способ изготовления образцов для установления градуировочных зависимостей должен указываться в стандартах или технических условиях на сборные конструкции, в рабочих чертежах на монолитные конструкции или же в методиках, утвержденных в установленном порядке.
3.6. Возраст образцов, используемых при установлении градуировочной зависимости, для методов отскока, ударного импульса и пластической деформации не должен отличаться от установленного срока испытаний конструкций:
– более чем на 40 % – при контроле прочности бетона естественного твердения;
– более чем в два раза – при контроле прочности бетона после тепловой обработки.
Температура бетона отдельных образцов при определении косвенной характеристики не должна отличаться от средней температуры образцов более чем на ±10 °С, а от температуры конструкции – более чем на ±10 °С.
При построении градуировочных зависимостей, предназначенных для контроля отпускной, передаточной и распалубочной прочности бетона, допускается устанавливать градуировочную зависимость по данным неразрушающих испытаний горячих образцов и испытания тех же образцов на сжатие по ГОСТ 10180 при нормальной температуре.
Относительная влажность образцов, используемых при установлении градуировочной зависимости, не должна отличаться от влажности испытуемой конструкции более чем на ±2 %.
При установлении градуировочной зависимости для метода отрыва со скалыванием косвенную характеристику определяют на дополнительно изготавливаемых образцах-кубах, а по ГОСТ 10180 испытывают образцы основных серий.
3.8. Для определения косвенных характеристик испытания проводят на боковых поверхностях образцов (по направлению бетонирования).
Число измерений на каждом образце для методов отскока и пластической деформации при ударе должно быть не менее пяти, а расстояние между местами ударов – не менее 30 мм. Для метода ударного импульса – не менее десяти, а расстояние между местами ударов – не менее 15 мм. Для метода пластической деформации при вдавливании количество испытаний на одной грани – не менее двух, а расстояние между местами испытаний – не менее двух диаметров отпечатков.
При установлении градуировочной зависимости методом скалывания проводят по одному испытанию на каждом боковом ребре.
При установлении градуировочной зависимости для метода отрыва со скалыванием проводят по одному испытанию на каждой боковой грани.
3.9. При испытании методом отскока, ударного импульса, пластической деформации при ударе образцы должны быть зажаты в прессе усилием (30 ± 5) кН.
3.10. За единичное значение прочности бетона принимают значение прочности бетона в серии по ГОСТ 10180 или прочность бетона одного образца (если градуировочную зависимость устанавливают по данным испытаний отдельных образцов).
Образцы, испытанные методом отрыва, устанавливают на прессе так, чтобы к опорным плитам пресса не прилегали поверхности, на которых проводили вырыв; результаты испытаний по ГОСТ 10180 увеличивают на 5 %.
3.11. За единичное значение косвенного показателя прочности при установлении градуировочной зависимости принимают среднеарифметическое значение этой величины в серии образцов (или образце), используемых для определения единичного значения прочности.
3.12. Градуировочная зависимость должна иметь среднеквадратическое (остаточное) отклонение S т , не превышающее 12 % при использовании серии образцов и 15 % при использовании отдельных образцов от среднего значения прочности .
Методика и пример установления градуировочной зависимости приведены в приложении 7.
3.13. Градуировочную зависимость следует оформлять в соответствии с приложением 8.
3.14. При отсутствии возможности установления градуировочных зависимостей в соответствии с требованиями пп. 3.2 – 3.12 следует применять метод отрыва со скалыванием или метод скалывания ребра, используя градуировочные зависимости, приведенные в приложениях 5 и 6.
Для обследования конструкций допускается применять методы упругого отскока, ударного импульса или пластической деформации, используя градуировочную зависимость, установленную для бетона, отличающегося от испытуемого (по составу, возрасту, условиям твердения, влажности), с уточнением ее в соответствии с методикой, приведенной в приложении 9.
3.15. При проведении обследований допускается испытание методами упругого отскока, ударного импульса и пластических деформаций бетона в пробах, отобранных от конструкции в соответствии с приложением 10.
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. Испытания проводят на участке конструкции площадью от 100 до 600 см 2 .
4.2. Прочность бетона в контролируемом участке конструкции определяют по градуировочной зависимости, установленной в соответствии с требованиями разд. 3, при условии, что измеренные значения косвенного показателя находятся в пределах между наименьшим и наибольшим значениями косвенного показателя в образцах, испытанных при построении градуировочной зависимости.
4.3. Число и расположение контролируемых участков при испытании конструкций должно соответствовать требованиям ГОСТ 18105 или указываться в стандартах и (или) технических условиях на сборные или в рабочих чертежах на монолитные конструкции и (или) технологических картах на контроль.
При определении прочности обследуемых конструкций число и расположение участков должно приниматься по программе проведения обследования.
4.4. Число испытаний на одном участке, расстояние между местами испытаний на участке и от края конструкции, толщина конструкции на участке испытания должны быть не меньше значений, приведенных в табл. 3.
Число испытаний на участке
Расстояние между местами испытаний, мм
Расстояние от края конструкции до места испытаний, мм
Определение несущей способности одиночной сваи
Расчёт производится в соответствии с СП 24.13330.2011 «Свайные фундаменты» (с изменениями №1, 2, 3)
1. Напластование грунтов
2. Характеристики грунта
3. Высотные отметки
Отметка рельефа по скважине 1 = 0 м, отметка головы сваи находится в интервале от +1 до -3 м с шагом 1 м в абсолютных координатах модели грунта. Длину сваи принимаем = 6 м. Свая целиком находится в ИГЭ №4 В инженерно-геологическом разрезе находится только один слой грунта.
4. Геометрические размеры
h (глубина заложения нижнего конца сваи от рельефа) = 5…9 м
U (периметр) = 4*d = 4*0.3 = 1.2 м
А (площадь) = d 2 = 0.3 2 = 0.09 м 2
5. Коэффициенты при расчётах
Yc = 1, для забивных свай, по п.7.2.2;
Ycr = 1 (погружение сплошных свай дизель-молотами), таблица 7.4, п.1;
Ycf = 1 (погружение сплошных свай дизель-молотами), таблица 7.4, п.1.
6. Определение несущей способности каждой сваи
Определение расчётного сопротивления грунта под нижним концом сваи выполняется по таблице 7.2:
Определение расчётного сопротивления грунта по боковой поверхности сваи выполняется по таблице 7.3:
Свая №1
Расчёт несущей способности сваи
Определение расчётного сопротивления под нижним концом сваи №1 по таблице 7.2:
R =2800 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;
Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=11.5 кПа (глубина 0.5), f2=26.5 кПа (глубина 1.5), f3=32.5 кПа (глубина 2.5), f4=36.5 кПа (глубина 3.5), f5=39 кПа (глубина 4.5).
Свая №2
Расчёт несущей способности сваи
Определение расчётного сопротивления под нижним концом сваи №2 по таблице 7.2:
R=3050 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;
Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=11.5 кПа (глубина 0.5), f2=26.5 кПа (глубина 1.5), f3=32.5 кПа (глубина 2.5), f4=36.5 кПа (глубина 3.5), f5=39 кПа (глубина 4.5), f6=41 кПа (глубина 5.5);
Свая №3
Расчёт несущей способности сваи
Определение расчётного сопротивления под нижним концом сваи №3 по таблице 7.2:
R=3300 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;
Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=26.5 кПа (глубина 1.5), f2=32.5 кПа (глубина 2.5), f3=36.5 кПа (глубина 3.5), f4=39 кПа (глубина 4.5), f5=41 кПа (глубина 5.5), f6=42.5 кПа (глубина 6.5);
Свая №4
Расчёт несущей способности сваи
Определение расчётного сопротивления под нижним концом сваи №4 по таблице 7.2:
R=3367 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;
Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=32.5 кПа (глубина 2.5), f2=36.5 кПа (глубина 3.5), f3=39 кПа (глубина 4.5), f4=41 кПа (глубина 5.5), f5=42.5 кПа (глубина 6.5), f6=43.5 кПа (глубина 7.5);
Свая №5
Расчёт несущей способности сваи
Определение расчётного сопротивления под нижним концом сваи №5 по таблице 7.2:
R=3433 кПа; Площадь поперечного сечения сваи А =0.3х0.3=0.09, м 2 ;
Периметр сваи u =0.3х4=1.2 м;
Определение расчётного сопротивления по боковой поверхности сваи №1 по таблице 7.3:
f1=36.5 кПа (глубина 3.5), f2=39 кПа (глубина 4.5), f3=41 кПа (глубина 5.5), f4=42.5 кПа (глубина 6.5), f5=43.5 кПа (глубина 7.5), f6=44.5 кПа (глубина 8.5).
Несущая способность свай
Несущая способность свай – это максимальная величина нагрузки, которую способна выдерживать погруженная в грунт свая, не подвергаясь деформациям.
- Методы определения несущей способности сваи
- Методы определения несущей способности грунта
- Несущая способность свай СНИП
- Несущая способность буронабивной сваи
- Несущая способность забивной ЖБ сваи
- Несущая способность винтовой сваи
- Как улучшить несущую способность сваи
- Инъектирование грунта
- Увеличение диаметра опорной подошвы сваи
Существует два типа несущей способности свай – по материалу изготовления и по грунту. Данные о несущей способности конструкции исходя из ее материала могут быть получены при проведении теоретических расчетов, тогда как определение несущей способности сваи по грунту требует проведения практических исследований на месте строительства.
Методы определения несущей способности сваи
При проектировании свайных фундаментов используются четыре метода определения несущей способности свайных конструкций:
- Способ теоретического расчета;
Совет эксперта! данный метод является предварительным, полученные результаты в последствии корректируются на основании фактических данных о характеристиках грунта.
Расчет несущей способности выполняется по формуле: Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li)
- Yc – совокупный коэфф. условий работы;
- Ycr – коэфф. сопротивления почвы под опорной подошвой сваи;
- R – сопротивление почвы под опорной подошвой сваи;
- А – диаметр опорной подошвы;
- U – периметр сечения свайного столба;
- Ycri – коэфф. условий работы грунта по боковым стенкам сваи;
- fi – сопротивление почвы по боковым стенкам;
- li – длина боковых поверхностей.
Практический способ реализуемый в полевых условиях. После отдыха сваи (спустя 2-3 дня после забивки столба), на конструкцию с помощью ступенчатого домкрата передается статическая нагрузка.
Посредством специального прибора – прогибометра, определяется величина усадки сваи и производятся необходимые расчеты. Данный метод считается одним из наиболее точных.
Рис 1.1: Определение несущей способности сваи методом пробных статистических нагрузок
Исследования проводятся на уже погруженных сваях по истечению периода отдыха столбов. На конструкцию посредством дизель молота передается ударная нагрузка (до 10 ударов). После каждого удара прогибометром определяется степень усадки сваи. Данный способ реализуется в комплексе со статическим методом.
Рис 1.2: Прогибометр – прибор для измерения усадки сваи
- Метод зондирования.
Для реализации метода зондирования свая снабжается специальным датчиками, после чего выполняется ее погружение на проектную глубину посредством ударной нагрузки (динамическое зондирование) либо вибропогружателями (статическое зондирование).
Датчики определяют сопротивление грунта боковой и нижней стенки свайного столба, по которой рассчитывают несущую способность конструкции в конкретном типе почвы.
Рис. 1.3: Схема метода зондирования свай
Методы определения несущей способности грунта
Несущая способность почвы – один из важнейших параметров, учитываемых во время проектирования свайных оснований.
Данная величина демонстрирует, какую нагрузку из вне способна переносить условная площадь грунта (она, как правило, существенно ниже несущей способности самой сваи). Несущая способность почвы рассчитывается в двух показателях – тонн/м2 либо кг/см2.
На несущую способность грунта оказывают непосредственное влияние следующие факторы:
- Тип почвы;
- Насыщенность влагой;
- Плотность.
Совет эксперта! Почва, чрезмерно насыщенная влагой, относится к категории проблемных грунтов, поскольку чем большее количество влаги она содержит, тем меньшими будут ее несущие характеристики.
Чтобы определить несущие свойства грунта необходимо проводить геодезические изыскания – для этого выполняется бурение пробной скважины, из которой берутся пробы разных слоев почвы. Все исследования и расчеты проводятся в строительно-испытательных лабораториях с применением специального оборудования.
Представляем вашему вниманию таблицу несущей способности основных типов грунтов:
Таблица 1.1: Несущая способность разных видов грунтов
При отсутствии возможности провести геодезические исследования вы можете самостоятельно определить ориентировочную несущую способность грунта, для этого с помощью ручного бура создайте скважину (до двух метров), опознайте тип почвы и сопоставьте ее с табличными данными.
Несущая способность свай СНИП
Важно! Исследования и расчеты направленные на определение несущих характеристик свай необходимо выполнять согласно требований СНиП № 2.02.03-85 “Свайные фундаменты”.
Несущая способность буронабивной сваи
Буронабивные сваи – конструкции, обладающие наибольшими несущими характеристиками среди всех видов свай.
Это сваи, сформированные в результате заполнения бетоном предварительно пробуренной скважины, они укреплены арматурным каркасом и, как правило, обладают уширенной опорной пятой, которая способствует равномерному распределению оказываемой на почву нагрузки.
Рис. 1.4: Этапы создания буронабивных свай
Расчет несущих свойств буронабивных свай выполняется по формуле: Fdu = R×A+u×∫ ycf ×Fi×Hi, в которой:
- R – нормативное сопротивление почвы под опорной пятой сваи;
- А – площадь опорной пяты;
- u – периметр сечения свайного столба;
- Ycf – коэфф. условий работы грунта на боковой стенке столба (=1);
- Fi – среднее сопротивление боковой поверхности опорной пяты;
- Hi – толщина слоев почвы контактирующих с боковой стенкой свайного столба.
- R, Fi и Hi – это нормативные данные, которые вы можете взять из нижеприведенных таблиц.
Таблица 1.2: Расчетные сопротивления на боковых стенка свай (Fi)
Таблица 1.3: Расчетная толщина слоев почвы контактирующей с боковыми стенками сваи (Hi)
Таблица 1.4: Сопротивление разных типов грунтов под опорной подошвой сваи (R)
Увидеть усредненные показатели несущих характеристик буронабивных свай вы можете в нижеприведенной таблице.
Таблица 1.5: Несущая способность буронабивных свай
Несущая способность забивной ЖБ сваи
Фактические несущие характеристики забивных ЖБ конструкций (Fd) рассчитывается как совокупность сопротивления почвы под нижней частью свайного столба (Fdf) и сопротивления по отношению к ее боковым стенкам (Fdr).
Формула расчета следующая: Fd=Ycr ×(Fdf+Fdr), где:
Fdf = u * ∑Ycf * Fi * Hi
- u – внешний периметр сечения ЖБ столба;
- Ycr – коэф. условий работы столба в почве (=1);
- Fi – сопротивление слоев почвы на боковой стенке сваи;
- Hi – общая толщина слоев почвы контактирующих с боковой стенкой свайного столба
- Fdr = Ycr * R * A
- R – нормативное сопротивление почвы под нижним концом сваи;
- А – площадь опорной подошвы.
Несущие характеристики забивных железобетонных свай вы можете посмотреть в таблице
Таблица 1.6: Несущие характеристики забивных ЖБ свай
Несущая способность винтовой сваи
Винтовые сваи – наиболее распространенный тип в свай в частном строительстве. Монтаж винтовых свай выполняется в кратчайшие сроки, а их несущих характеристик с запасом хватает для обустройства надежного фундамента под строительство 1-2 этажного дома из легких материалов.
Рис 1.5: Виды винтовых свай
Формула расчета несущей способности винтовой сваи: Fd=Yc*((a1с1+a2y1h1)A+u*fi(h-d))
Yc – коэф. условий работы столба в почве;
a1 и a2– нормативные коэфф. из таблицы:
Таблица 1.7: Нормативные коэффициенты угла внутреннего трения грунта
- с1 – коэфф. линейности почвы (для песчаных грунтов) либо значение удельного сцепления (для глинистых);
- y1 – удельный вес почвы расположенной выше лопастей сваи;
- h1 – глубина расположения сваи;
- А – диаметр винтовых лопастей за вычетом диаметра столба сваи;
- fi – сопротивление почвы по боковым стенкам сваи;
- u – периметр свайного столба;
- h – общая длина ствола сваи;
- d – диаметр опорных лопастей.
Предлагаем вашему вниманию характеристики несущих способностей наиболее распространенных в строительстве типоразмеров винтовых свай.
Таблица 1.8: Несущая способность винтовых свай диаметром 76 мм.
Таблица 1.9: Несущая способность винтовых свай диаметром 89 мм.
Как улучшить несущую способность сваи
Среди технологий увеличения несущей способности свайных оснований существуют как универсальные способы, применимые к свай любого типа, так и индивидуальные методы, которые реализуются отдельно для забивных и винтовых конструкций.
Инъектирование грунта
Это максимально эффективный метод увеличение несущих характеристик любых свай расположенных в дисперсных грунтах с невысокой плотностью.
Инъекции в грунт песчано-цементного раствора выполняются в пространство между сваями на глубину в 1-2 метра ниже крайней точки свайного столба.
Для подачи раствора используются специальные строительные инъекторы, при этом раствор нагнетается под постоянно возрастающим давлением (от 2 до 10 атмосфер) в результате чего в грунте создаются полости радиусом до 2 метров.
Рис 1.6: Усиление несущей способности свайного фундамента инъектированием (1 – бетон, 2 – сваи)
Сетка инъекций рассчитывается так, чтобы расположенные по периметру свайного основания бетонные полости примыкали друг к другу.
Совет эксперта! После отвердевания бетона в грунте наблюдается серьезное повышение несущей способности почвы (при качественно реализованной технологии – двукратное).
Увеличение диаметра опорной подошвы сваи
Пята сваи – основная опорная точка заглубленного в грунт столба. При обустройстве свайных фундаментов в грунтах с низкой несущей способностью рационально использовать сваи с уширенной опорной подошвой, так как с увеличением ее диаметра значительно несущие характеристики конструкции.
При обустройстве оснований на сваях винтового типа с этим проблем не возникает, поскольку механизированный способ погружения позволяет завинчивать металлические сваи с достаточно большим диаметром лопастей, тогда как забивные ЖБ сваи с уширением погрузить невозможно ни ударным ни вибрационным методом из-за высокого сопротивления грунта.
Совет эксперта! Для создания опорного уширения забивных ЖБ свай используется два метода – обустройство камуфлетных свай и бурение лидерных скважин буром-расширителем.
Рис 1.7: Схема создания камуфлетных буронабивных свай
Камуфлетные буронабивные сваи – конструкции, уширение в нижней части которых создано посредством взрыва детонирующего вещества внутри лидерной скважины. После камуфлетирования полученное уширение заполняется бетонным раствором и в скважину погружается ЖБ свая.
Наши услуги
Мы, строительная компания “Богатырь”, базируемся на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.
Расчет несущей способности сваи по грунту
Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.
Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.
В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.
Расчет свай начинается с выбора их типа.
По способу заглубления в грунт различают:
- Забивные сваи. Самый популярный вид. Погружаются в грунт путем забивки пневматическим молотом на рассчитанную глубину;
- Буронабивные сваи устанавливаются в самые короткие сроки. Сначала методом шнекового бурения разрабатывают скважину и уплотняют грунт вокруг нее. Потом одновременно с извлечением бура под давлением закачивают в скважину бетонную смесь. Сразу после этого в ней устанавливают армирующий каркас. Его изготавливают из металлических стержней на заводе или строительной площадке;
- Вибропогружаемые опускаются в толщу пород под действием собственного веса. Специальная установка передает вибрацию через сваю на грунт, за счет этого уменьшается сила трения между конструкцией и частицами почвы и свая постепенно погружаются в породу. Метод применяется на площадках с песчаным или насыщенным влагой грунтом;
- Винтовые конструкции имеют лопасти на концах, благодаря им конструкция погружается в землю. Хорошо работают на неустойчивых грунтах и плывунах при наличии недалеко от поверхности прочной породы. При монтаже не издают шума, не повреждают почву, могут устанавливаться на площадках с плотной застройкой. Монтаж осуществляется вручную или с применением легкой техники;
- Вдавливаемые устанавливаются без сильных толчков и вибраций, создают минимальную нагрузку на почву и фундаменты расположенных вблизи сооружений. Подходят для строительства крупных объектов в местах с плотной застройкой и вблизи зданий с неустойчивыми или старыми фундаментами.
По виду материала:
- Железобетон. Самый популярный материал для возведения крупных объектов. Металл, составляющий каркас обеспечивает стойкость к изгибающим нагрузкам, а бетон защищает металлоконструкцию от воздействия окружающей среды, обеспечивает стойкость к вертикальным нагрузкам и увеличивает силу трения с грунтом;
- Дерево. Применяется в индивидуальном строительстве на сухих почвах. Дешевый и доступный материал, но требует дополнительной гидроизоляции;
- Металл. Из этого материала выполняют винтовые сваи. После изготовления их покрывают специальным составом, защищающим их от коррозии.
Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.
По характеру работы:
- Сваи-стойки работают за счет установки их нижней части на прочную породу. Они передают нагрузку на устойчивое основание, миную другие, менее надежные слои;
- Висячие сваи работают за счет силы трения между ними и сжатыми грунтами вокруг.
На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.
Проектирование свайного фундамента
При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:
- Глубина залегания толщина и надежность пород;
- Масса здания;
- Условия строительства и эксплуатации;
- Конструктивные особенности здания.
При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.
Второй важный фактор — это нагрузка от здания.
Она складывается из нескольких видов нагрузки:
- Постоянная. Включает в себя вес самого здания;
- Долгосрочная временная — это вес станков, оборудования и других тяжелых конструкций;
- Краткосрочная временная складывается из веса мебели и людей в здании;
- Снеговая и ветровая нагрузки рассчитываются отдельно для каждого здания на основании климатических данных региона согласно СП 131.13330.2012 «Строительная климатология».
Карта снеговых районов России
Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.
На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.
Расчет ростверка
Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.
Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.
Количество свай в ростверке находят по формуле:
- dp — заглубление ростверка;
- N0I — максимальное значение суммы нагрузок от веса здания;
- Yk — коэффициент надежности;
- F — максимальная нагрузка на одну сваю;
- A — площадь ростверка;
- Ymt — усредненный вес ростверков и грунта на его обрезах.
Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.
Сваи распределяют согласно правилам:
- В шахматном порядке, в два ряда или в одну линию с равными промежутками;
- Расстояние между соседними сваями не менее трех их диаметров;
- Минимальное расстояние от края ростверка до ближайшей сваи равно одному ее диаметру;
- При возникновении только вертикальных нагрузок сваи заглубляют в ростверк всего на 5–10 см, в иных случаях соединение делают более надежным и дополнительно рассчитывают.
При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».
Алгоритм расчета свайного фундамента
Процесс расчета начинается с определения общего веса здания.
Он состоит из суммы массы всех конструкций:
- Кровля;
- Стены;
- Перекрытия;
- Железобетонный каркас.
При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.
Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.
Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.
После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.
Расчет несущей способности по грунту
Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.
Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:
- А — площадь опирания на грунт нижней части единицы конструкции;
- Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
- U — периметр разреза сваи;
- fi — сила трения на боковых стенках;
- R — величина несущей способности грунта в месте опирания;
- li — длина боковых частей.
Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.
Это наиболее точный метод:
- На площадке устанавливают пробную сваю;
- Дают конструкции набраться прочности в течение положенного срока;
- Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
- Специальный прибор замеряет усадку сваи;
- На основе полученных данных проводятся расчеты.
Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.
Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.
После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.
Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.
Он способен:
- Построить график изменения несущей способности;
- Разбить толщу пород на слои, основываясь на введенных данных;
- Найти коэффициент работы всей поверхности сваи;
- Учесть коэффициенты, уменьшающие несущую способность.
Расчет сваи-стойки, опирающейся на несжимаемое основание
Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».
В таблице указаны значения расчетных сопротивлений свай:
Табличные значения сопротивлений для разных типов грунта
Формула для расчета сваи-стойки:
- gc — коэффициент, учитывающий работу грунта;
- R — взятое из таблицы сопротивление грунта;
- А — площадь разреза сваи.
Результат расчета используется для дальнейшего нахождения количества свай в ростверке.
Заключение
Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.
Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.
Как рассчитывается несущая способность сваи
Несущая способность свай – это способность строительной конструкции уравновешивать нагрузку от веса строения и сопротивление грунта. Расчёт сопротивления опоры этим двум силам даёт определение несущей способности сваи. Когда опорные стержни в одном фундаменте расположены на отдалённом расстоянии друг от друга, несущая способность опорного стержня используется полностью. Современные методы расчётов определают нужное количество опорных стержней с оптимальной точностью.
Методы расчета несущей способности свай
Несущая способность свай рассчитывается с учетом следующих факторов:
- Материал сваи (деревянный столб, железобетонный стержень, буронабивная конструкция и другие);
- Одиночная опора или свайная группа;
- Положение опор в грунте (висячая конструкция, кустовое расположение, свая на плотном грунтовом основании);
- Характеристика свойств грунта (плотность, структура почвы, пучинистость, глубина промерзания, уровень грунтовых вод).
При подсчёте несущей способности свайного поля, суммируют показатели несущей способности отдельных опорных стержней.
Монтаж бетонных свай
Однако следует учитывать, что при чрезмерном количестве опорных стержней, общая несущая способность свай будет сокращаться за счёт уменьшения силы бокового трения грунта о свайный стержень. Может возникнуть ситуация, при которой опоры могут продавить слабое грунтовое основание.
При определении несущей способности опор используют три метода:
- Теоретический метод, основанный на применении формул и таблиц СНиП 11-17-77;
- Динамический метод получения результатов опытной забивки свай;
- Пробный метод статической нагрузки опор и исследования грунта.
Рассмотрим все три метода исследования несущей способности опорных стержней.
Теоретический метод
Разрабатывая проектную документацию, специалисты часто применяют теоретический метод подбора конструкций опор. Он заключается в анализе вертикальной съёмки грунта по месту привязки генерального плана строительства объекта, общей нагрузки на свайное основание.
Учитывая равномерность залегания однородных грунтов, уровня грунтовых вод под стройплощадкой, с помощью формул и таблиц СНиП определяется несущая способность стержня. Определают материал опор, частоту распределения их по свайному ростверку.
Помимо этого выбирают способ забивки опор, вид механизма, массу его молота. Например, масса ударной части молота должна быть не менее общего веса сваи. Если длина сваи более 12 метров, то масса молота будет составлять 1,25 массы стержня. Когда опорный стержень забивают в плотный грунт, то используют сваебойную машину с массой ударной части молота равной 1,5 всей массы опорного стержня.
Зазор между боковой поверхностью конца сваи и стенкой оголовника не должен быть больше одного сантиметра.
Пример расчёта несущей способности буронабивной сваи
Буронабивная свая представляет собой обсадную трубу, погруженную на глубину до проектной отметки, Трубу заполняют бетоном. Такие трубы применяют при строительстве крупных промышленных объектов с повышенными эксплуатационными нагрузками. Максимальный диаметр трубы достигает 1,5 метра, а максимальная длина бывает около 40 метров.
Расчёт несущей способности сваи по материалу производят, используя результаты статического зондирования.
Согласно СНиП, несущая способность свай определяется по формуле:
R (сопротивление грунта под подошвой сваи) = 800 кПа;
А (площадь поперечного сечения обсадной трубы) = 0,6 м2;
u (периметр поперечного сечения опоры) = 2,7 м;
fi (среднее сопротивление боковой поверхности опоры);
hi (толщина слоя грунта);
Σ γcf ∙ fi ∙ hi (табличное значение СНиП) = 230
В итоге получим результат:
Несущая способность свай буронабивного вида в данных условиях будет равна 102,1 т.
Динамический метод
Забитые опорные стержни в песчаный грунт и выдерживают 3 суток. Опоры в глинистой почве выдерживают 6 суток. Потом приступают к динамическим испытаниям. Посмотрите видео, как проводятся испытания динамическим методом.
Это объясняется тем, что возникает ложный отказ и засасывание опорных стержней. После серии ударов по оголовнику, опора перестаёт погружаться в основание. Через несколько суток опора опять продолжает погружаться под ударами молота. Такое явление называют ложным отказом.
Ложный и истинный отказы свай
Происходит ложный отказ при погружении опор в грунтовое основание средней плотности из-за частых ударов молота. Вокруг конца опорного стержня образуется грушевидное уплотнение почвы, которое оказывает повышенное сопротивление продвижению сваи вглубь. За время остановки забивки опор на несколько суток, уплотнение вокруг свайного стержня рассасывается за счёт медленного отжима воды из этой области. При возобновлении забивки, свая продолжает погружаться. Весь процесс повторяют, пока опора не займёт своё проектное положение.
Погружение свай в глинистую почву может вызвать её разжижение, то есть происходит нарушение грунтового основания. Такое нарушение вызывает поднятие грунтовой воды вверх вдоль ствола опоры. Это значительно уменьшает сопротивление почвы погружению сваи. Происходит засасывание опоры. Погружение сваи прерывают. Через несколько суток сопротивление основания восстанавливается. Забивку свай продолжают до полной установки. Посмотрите видео, как монтировать сваю до проектного положения.
Пробный метод
Испытывая опоры статическими осевыми нагрузками, можно определить несущую способность свай. Применяют этот метод к монолитным, набивным сваям и сваям-оболочкам.
Нагружают опору испытательными грузами двумя способами:
- Ступенчатый. Постепенно увеличивают груз;
- Циклические нагрузки. Несколько раз опору нагружают и затем постепенно освобождают от груза.
Пробные нагрузки помещают на специальную площадку, установленную на оголовке опоры. По мере увеличения грузов, индикаторы фиксируют степень осадки опоры. Индикаторы отмечают осадку с точностью до 0,1 мм. Затем площадку разгружают и демонтируют. Через некоторое время всю операцию повторяют.
Испытание сваи гидравлическим молотом
Испытывают опоры также с помощью анкерных свай и гидравлических домкратов. Вокруг испытуемого образца погружают несколько анкерных свай, на которые устанавливают специальную конструкцию Конструкция, скреплённая с анкерными опорами, служит упором для гидравлического домкрата.
Домкрат, упираясь в площадку, создаёт нужное давление на оголовок сваи. Нагрузку увеличивают ступенчато, добавляя каждый раз 0,1 предельного сопротивления опоры. Загружать сваю продолжают, пока величина осадки не достигнет 40 мм. Очередной раз увеличивают давление лишь тогда, когда осадка прекращается от предыдущей нагрузки. Прекращение осадки наступает в том случае, когда в течение 2 часов индикаторы показывают погружение не более 0,2 мм в песчаной и 0,1 мм в глинистой почве.
На основе специальной расчётной методики и разных способов измерений, определают несущую способность опоры. Все изменения величины осадки во времени фиксируют в журнале. На основании материала исследований, строят график изменения величины осадки в зависимости от увеличения нагрузки.
Задача статьи состоит в том, чтобы донести до читателя в популярной форме суть методик определения несущей способности свайных конструкций. Поэтому статья не загружена сложными графиками и громоздкими формулами.
Испытания динамическим и пробным методами свай проводят в основном там, где на местности нет возможности произвести точные геолого-изыскательские работы.
В обжитых районах страны местность, как правило, тщательно обследована изыскательскими организациями. В местном управлении архитектуры всегда можно получить копию вертикальной съёмки грунта стройплощадки. Применяя метод теоретического расчёта, можно определить несущую способность свайного основания, не прибегая к испытательным методам.