Плотность и удельный вес металлов и их сплавов

Удельный вес металла

При проектировании деталей и металлоконструкций необходимо знать сколько будет весить готовое изделие или сооружение. Эта характеристика важна для работы механизмов, расчетов нагрузок на опоры. Образцы одного объема и формы, выполненные из разных материалов имеют разные показатели массы, ускорения. Это же относится к сравнению металлических сплавов одной группы. Что такое удельный вес металла, как его определить?

Удельным называют вес абсолютно плотного вещества. Для измерения следует привести материал в такое состояние, в котором в структуре отсутствуют поры и посторонние включения. Расчет проводят по формуле:

где P — вес однородного тела, V — его объем

Принято несколько систем вычисления с разными единицами измерения.

  • СГС (дин/см³): 1 дина — это сила, которая сообщает ускорение 1 см/с² телу массой в 1 г. Метод был разработан в 1832 г., позже признан сложно применимым и исключен из инженерных расчетов, но применяется до сих пор в физике и астрофизике.
  • СИ (Н/м³): международная система измерения для обозначения физических характеристик, для учета используют силу тяжести в ньютонах на кубический метр объема.
  • МКГСС (кГ/м³): импульс, сообщающий телу m=1 кг, ускорение, равное ускорению свободного падения, но в горизонтальной плоскости. Методика не принята стандартами ГОСТ с 60-х годов, но используется в промышленности благодаря измерительным приборам, функционирующим в МКГСС.

Эти единицы измерения легко конвертировать: 0,1 дин/см³= 1 Н/м³= 0,102кГ/м³. Для удобства вычислений в металлургии используют обозначения в кубических сантиметрах и метрах. Это зависит от ценности и расхода сырья. Иногда Ƴ путают с плотностью. Действительно, их вычисляют по похожим формулам. Однако плотность (P=m/V) рассчитывают для любых тел и веществ, и даже пространств (межгалактические и межзвездные среды), а не только для абсолютно плотных.

Величина меняется в зависимости от температуры среды. Определение “весит” указывает на силу, с которой тело воздействует на подвес или поверхность, она имеет направленный вектор: Р (в ньютонах)=mg (масса в кг*ускорение свободного падения м/с²). Там, где важна высокая точность, значение g варьируется от 9,780 на экваторе Земли до 9,82 на полюсах. Во всех остальных случаях допускается округление до 10. Масса тел постоянна.

Удельный вес цветных металлов

Цветмет — ограниченное и ценное сырье, каждый материал обладает уникальными свойствами: свинец и олово смягчают трение механизмов, алюминий легкий и безопасный, из его сплавов делают самолеты и упаковку для пищи. Величину Ƴ вычисляют в лабораторных условиях. Она соотносится с температурой плавления — фазовым переходом из твердого состояния в жидкое под воздействием нагрева и давления. В этом же терморежиме происходит и обратный процесс.

Таким образом, t плавления = t кристаллизации.

Это совпадение возможно только для идеально чистых однородных веществ, не содержащих примесей. Именно эти цифры указывают в справочниках.

Таблица удельного веса цветных металлов

Наименование цветного металла Химическое обозначение Атомный вес Температура плавления, °C Удельный вес, г/куб.см
Цинк (Zinc) Zn 65,37 419,5 7,13
Алюминий (Aluminium) Al 26,9815 659 2,69808
Свинец (Lead) Pb 207,19 327,4 11,337
Олово (Tin) Sn 118,69 231,9 7,29
Медь (Сopper) Cu 63,54 1083 8,93
Титан (Titanium) Ti 47,90 1668 4,505
Никель (Nickel) Ni 58,71 1455 8,91
Магний (Magnesium) Mg 24 650 1,74
Ванадий (Vanadium) V 6 1900 6,11
Вольфрам (Wolframium) W 184 3422 19,3
Хром (Chromium) Cr 51,996 1765 7,19
Молибден (Molybdaenum) Mo 92 2622 10,22
Серебро (Argentum) Ag 107,9 1000 10,5
Тантал (Tantal) Ta 180 3269 16,65
Золото (Aurum) Au 197 1095 19,32
Платина (Platina) Pt 194,8 1760 21,45

Таблица удельного веса сплавов

Адмиралтейская латунь — Admiralty Brass (30% цинка, и 1% олова)

Алюминиевая бронза — Aluminum Bronze (3-10% алюминия)

Баббит — Antifriction metal

Бериллиевая бронза (бериллиевая медь) — Beryllium Copper

Дельта металл — Delta metal

Желтая латунь — Yellow Brass

Фосфористые бронзы — Bronze — phosphorous

Обычные бронзы — Bronze (8-14% Sn)

Ковкий чугун — Wrought Iron

Красная латунь (мало цинка) — Red Brass

Латунь, литье — Brass — casting

Латунь, прокат — Brass — rolled and drawn

Легкие сплавы алюминия — Light alloy based on Al

Легкие сплавы магния — Light alloy based on Mg

Марганцовистая бронза — Manganese Bronze

Нержавеющая сталь — Stainless Steel

Нейзильбер — Nickel silver

Припой 50% олово/ 50% свинец — Solder 50/50 Sn Pb

Светлый антифрикционный сплав для заливки подшипников =штейн с содержанием 72-78% Cu — White metal

Свинцовые бронзы, Bronze — lead

Углеродистая сталь — Steel

Чугуны — Cast iron

Электрум (сплав золота с серебром, 20% Au) — Electrum

Все вещества имеют разную молекулярную структуру и межатомное расстояние, поэтому вес атома не всегда точно соотносится с удельным. Человечество научилось применять эти свойства во благо. Тяжесть золота относительно минералов позволила золотоискателям отмывать песчинки в ручье, в то время как легкие титан и алюминий дали возможность подняться в небо.

Ни один металлический элемент таблицы Менделеева невозможно получить в чистом состоянии: чистота электротехнической бескислородной меди 99,999%.

Ее применяют только в высокоточной аппаратуре, так как удаление примесей требует использования сложных технологий. Для производства проводников достаточно 99,9. Многие цветные металлы используются исключительно в сплавах: дюраль, мельхиор, бронза, латунь и др.

Марочные сплавы не имеют точной температуры плавления, только переходные диапазоны. При расчетах и проектировании показатель Ƴ= P/V не используют, но устанавливается плотность, присущая каждой марке. Например у латуни ЛМцА57-3-1 она равна 8100 кг/м³. Из этой марки производят детали для морских судов. Благодаря значению можно вычислить сколько сырья потребуется для производства партии и каждой детали в отдельности. Слитки с недостаточным соотношением массы и объема будут низкого качества, вероятно в их структуре присутствуют включения газов и оксидов.

Удельный вес чугуна

Железо — один из самых распространенных элементов в земной коре. Это важнейший конструкционный материал, стойкий к механическим нагрузкам. Из железных руд выплавляют чугун — сплав на основе железа и углерода. Если уменьшить углеродную составляющую — получится сталь.

Чистое железо, синтезированное лабораторным путем, весит 7,874 г/см³ или 7874 кг/м³. Его t плавления 1538⁰, но предварительно оно претерпевает ряд превращений по кристаллическому признаку, поэтому при выплавке чугуна достигать этого нагрева не требуется.

Ƴ чугуна вычислить невозможно, так как его физические свойства зависят от массовой доли углерода и его состояния: формирование включений графита или карбидных соединений. Для обозначения параметра используют диапазон величин, присущий типу.

  • Белый: 7-7,8 г/см³ — получают в результате быстрого охлаждения расплава, структура с максимальным содержанием карбидов железа неустойчива и распадается при механических воздействиях, резких перепадах температур, излом белого цвета. Металл твердый и хрупкий, используется в качестве сырья для изготовления других марок.
  • Серый: 6,6-7,8 г/см³ — в расплав добавляют кремний, углерод выпадает из структуры и формирует включения графита между ячейками. Легирование делает чугун легче.
  • Ковкий — производят путем термической обработки белых чугунных слитков. В зависимости от терморежима часть углерода образует графитовые хлопья и сплав лучше поддается пластической деформации. Стандартами установлены значения плотности для каждой марки.

В результате изменения режимов охлаждения получают промежуточные варианты. Благодаря легирующим добавкам на рынке представлены жаростойкие, антифрикционные, износостойкие, коррозионностойкие и другие чугуны. Самые легкие из применяемых марок имеют показатель P=m/V равный 6,8 г/см³, у быстрорежущих сталей он достигает 8.

Типичные физические свойства и удельный вес чугуна

Тип чугуна Удельный вес Г/см3 Коэффициент теплового линейного расширения a·10 -в 1/ о С, при температурах 20-100 о С Теплоемкость в кал/Г · о С Остаточный магнетизм в гс Примечание, с повышением температуры:
“+” — повышается;
“-” — понижается
Белый 7,5±0,2 8±2 0,13±0,02 5000±1000 «-»
Серый 7,1±0,2 10±2 0,12±0,02 5000±1000 «+»
Ковкий 7,3±0,1 11±1 0,12±0,02 5000±1000 «-»

Вывод

Удельный вес — это сила воздействия на подвес или поверхность, рассчитанная в ньютонах для тела из абсолютно плотного вещества, не имеющего в своем составе посторонних включений.

На практике такого состояния достичь невозможно. Лабораторная величина соотносится со строением атома, типом кристаллической решетки.

При создании марок черных и цветных металлов знание Ƴ помогает заранее вычислить плотность новой разработки. Значение необходимо в научных и промышленных отраслях, в точном конструировании, компьютерном моделировании. Установленные показатели в килограммах на кубический метр представлены в стандартах ГОСТ, для удобства расчета закупок и распределения металлопроката можно использовать специальные онлайн-калькуляторы, или зная форму полуфабриката, посчитать объем затраченного сырья по геометрической формуле. Так, при продаже арматуры применяют тоннаж, для ювелирных изделий указывают граммы.

Для удобства воспользуйтесь нашим марочником стали.

Чугун: виды, марки, плотность, удельный вес и масса

Плотность чистых металлов

Наименование материала, марка Плотность ρ, кг/м3
Алюминий 2700
Бериллий 1840
Ванадий 6500-7100
Висмут 9800
Вольфрам 19300
Галлий 5910
Гафний 13090
Германий 5330
Золото 19320
Индий 7360
Иридий 22400
Кадмий 8640
Кобальт 8900
Кремний 2550
Литий 530
Магний 1740
Медь 8940
Молибден 10300
Марганец 7200-7400
Натрий 970
Никель 8900
Олово 7300
Палладий 12000
Платина 21200-21500
Рений 21000
Родий 12480
Ртуть 13600
Рубидий 1520
Рутений 12450
Свинец 11370
Серебро 10500
Талий 11850
Тантал 16600
Теллур 6250
Титан 4500
Хром 7140
Цинк 7130
Цирконий 6530

Особенности применяемой таблицы


Для того чтобы рассчитать вес будущего изделия, которое будет получено из чугуна, следует знать его размеры и показатель плотности. Линейные размеры определяются для того, чтобы рассчитать объем. Применяется расчетный метод определения веса изделия в том случае, когда нет возможности провести его взвешивание.

Рассматривая методические таблицы, стоит уделить внимание таким моментам:

  • Все металлы разделены на несколько групп.
  • Для каждого материала указывается наименование, а также ГОСТ.
  • В зависимости от температуры плавления указывается значение плотности.
  • Для определения физического значения удельной плотности в килограммах или других изменениях проводится перевод единиц изменения. К примеру, если нужно перевести граммы в килограммы, то проводится умножение табличного значения на 1000.

Определение удельного веса зачастую делается в специальных лабораториях. Это значение редко используется при проведении реальных расчетов во время изготовления изделий или строительства сооружений.

Плотность черных металлов

Наименование материала, марка Плотность ρ, кг/м3
Сталь 10 ГОСТ 1050-88 7856
Сталь 20 ГОСТ 1050-88 7859
Сталь 40 ГОСТ 1050-88 7850
Сталь 60 ГОСТ 1050-88 7800
С235-С375 ГОСТ 27772-88 7850
Ст3пс ГОСТ 380-2005 7850
Чугун ковкий КЧ 70-2 ГОСТ 1215-79 7000
Чугун высокопрочный ВЧ35 ГОСТ 7293-85 7200
Чугун серый СЧ10 ГОСТ 1412-85 6800
Чугун серый СЧ20 ГОСТ 1412-85 7100
Чугун серый СЧ30 ГОСТ 1412-85 7300

Таблица удельного веса чугуна

Так как, чугун является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом его средний удельный вес известен. Этот параметр составляет: для серого чугуна от 6,6 до 7,8 г/см3, для белого от 7,0 до 7,8 г/см3.

Для упрощения подсчетов ниже представлена таблица с значениями таких параметров, как вес чугуна, удельный вес чугуна, а также эти значения в зависимости от единиц исчисления. Удельный вес и вес 1 м3 чугуна в зависимости от единиц измерения

Материал Удельный вес (г/см3) Вес 1 м3 (кг)
Чугун белого типа От 7 до 7,8 От 7000 до 7800
Чугун серого типа От 6,6 до 7,8 От 6600 до 7800

Плотность нержавеющих сталей

Наименование материала, марка Плотность ρ, кг/м3
04Х18Н10 7900
08Х13 7700
08Х17Т 7700
08Х20Н14С2 7700
08Х18Н10 7900
08Х18Н10Т 7900
08Х18Н12Т 7950
08Х17Н15М3Т 8100
08Х22Н6Т 7600
08Х18Н12Б 7900
10Х17Н13М2Т 8000
10Х23Н18 7950
12Х13 7700
12Х17 7700
12Х18Н10Т 7900
12Х18Н12Т 7900
12Х18Н9 7900
15Х25Т 7600

Определение и характеристика плотности


Плотность — физическая величина, определяющая соотношение массы к объему. Подобным физико-механическим показателем характеризуются практически все материалы. Стоит учитывать, что соответствующий показатель плотности алюминия, меди и чугуна существенно отличаются.

Рассматриваемое физико-механическое качество определяет:

  • Некоторые физико-механические свойства. В большинстве случаев повышение плотности связано с уменьшением зернистости структуры. Чем меньше расстояние между отдельными частицами, тем более прочная образуется связь между ними, повышается твердость и снижается пластичность.
  • С уменьшением расстояния между частицами увеличивается их количество и вес материала. Поэтому при создании автомобилей, самолетов и другой техники выбирается материал, который обладает легкостью и достаточной прочностью. Например, плотность алюминия кг м3 составляет около 2 700, в то время как плотность металла кг м3 более, чем в два раза больше.

Существуют специальные таблицы плотности металлов, в которых указывается рассматриваемый показатель для стали и цветных сплавов, а также чугуна.

Плотность сплавов цветных металлов

Наименование материала, марка Плотность ρ, кг/м3
АЛ1 2750
АЛ2 2650
АЛ3 2700
АЛ4 2650
АЛ5 2680
АЛ7 2800
АЛ8 2550
АЛ9 (АК7ч) 2660
АЛ11 (АК7Ц9) 2940
АЛ13 (АМг5К) 2600
АЛ19 (АМ5) 2780
АЛ21 2830
АЛ22 (АМг11) 2500
АЛ24 (АЦ4Мг) 2740
АЛ25 2720
Б88 7350
Б83 7380
Б83С 7400
БН 9500
Б16 9290
БС6 10050
БрАмц9-2Л 7600
БрАЖ9-4Л 7600
БрАМЖ10-4-4Л 7600
БрС30 9400
БрА5 8200
БрА7 7800
БрАмц9-2 7600
БрАЖ9-4 7600
БрАЖМц10-3-1,5 7500
БрАЖН10-4-4 7500
БрБ2 8200
БрБНТ1,7 8200
БрБНТ1,9 8200
БрКМц3-1 8400
БрКН1-3 8600
БрМц5 8600
БрОФ8-0,3 8600
БрОФ7-0,2 8600
БрОФ6,5-0,4 8700
БрОФ6,5-0,15 8800
БрОФ4-0,25 8900
БрОЦ4-3 8800
БрОЦС4-4-2,5 8900
БрОЦС4-4-4 9100
БрО3Ц7С5Н1 8840
БрО3Ц12С5 8690
БрО5Ц5С5 8840
БрО4Ц4С17 9000
БрО4Ц7С5 8700
БрБ2 8200
БрБНТ1,9 8200
БрБНТ1,7 8200
ЛЦ16К4 8300
ЛЦ14К3С3 8600
ЛЦ23А6Ж3Мц2 8500
ЛЦ30А3 8500
ЛЦ38Мц2С2 8500
ЛЦ40С 8500
ЛС40д 8500
ЛЦ37Мц2С2К 8500
ЛЦ40Мц3Ж 8500
Л96 8850
Л90 8780
Л85 8750
Л80 8660
Л70 8610
Л68 8600
Л63 8440
Л60 8400
ЛА77-2 8600
ЛАЖ60-1-1 8200
ЛАН59-3-2 8400
ЛЖМц59-1-1 8500
ЛН65-5 8600
ЛМц58-2 8400
ЛМцА57-3-1 8100
Л60, Л63 8400
ЛС59-1 8450
ЛЖС58-1-1 8450
ЛС63-3, ЛМц58-2 8500
ЛЖМц59-1-1 8500
ЛАЖ60-1-1 8200
Мл3 1780
Мл4 1830
Мл5 1810
Мл6 1760
Мл10 1780
Мл11 1800
Мл12 1810
МА1 1760
МА2 1780
МА2-1 1790
МА5 1820
МА8 1780
МА14 1800
Копель МНМц43-0,5 8900
Константан МНМц40-1,5 8900
Мельхиор МнЖМц30-1-1 8900
Сплав МНЖ5-1 8700
Мельхиор МН19 8900
Сплав ТБ МН16 9020
Нейзильбер МНЦ15-20 8700
Куниаль А МНА13-3 8500
Куниаль Б МНА6-1,5 8700
Манганин МНМц3-12 8400
НК 0,2 8900
НМц2,5 8900
НМц5 8800
Алюмель НМцАК2-2-1 8500
Хромель Т НХ9,5 8700
Монель НМЖМц28-2,5-1,5 8800
ЦАМ 9-1,5Л 6200
ЦАМ 9-1,5 6200
ЦАМ 10-5Л 6300
ЦАМ 10-5 6300

Химический состав


Этот металл представляет собой сплав железа и углерода, который содержит небольшое количество примесей. Процентное содержание железа достигает уровня более 90%. А также присутствуют кремний, фосфор, марганец и сера. Углерода — не менее 2,14%. Он определяет свойства всего соединения.

Роль углерода

Прежде всего углерод даёт твёрдость. Именно углерод формирует прочностные характеристики сплаву, который является отличным материалом для литейного производства. Но он же снижает пластичность и ковкость.

Поэтому твёрдый, но хрупкий металл имеет ограниченную область применения. В основном это металлургия, машиностроение, автомобилестроение, производство тяжёлой специальной техники, коммунальное хозяйство и промышленный дизайн.

В составе чугуна углерод присутствовать в разных формах: как цементит (Fe 3 C), или графит (пластинчатый, сферического, хлопьевидный). Графит в значительной степени определяет свойства этого материала, который в настоящее время подразделяется на следующие виды:

  1. Серый.
  2. Высокопрочный.
  3. Ковкий.
  4. Белый.
  5. Половинчатый.

Влияние примесей на характеристики металла

Промышленный чугун содержит примеси. Эти примеси сильно сказываются на свойствах, характеристиках и структуре чугуна.

  • Так, марганец тормозит процесс графитизации. Выделение графита приостанавливается, в результате чугун приобретает способность отбеливаться.
  • Сера ухудшает литейные и механические характеристики.
  • Сульфиды в основном образуются в сером чугуне.
  • Фосфор улучшает литейные свойства, увеличивает износостойкость и повышает твердость. Однако на этом фоне чугун все же остается хрупким.
  • Кремний больше всех влияет на структуру материала. В зависимости от количества кремня получаются белый и ферритный чугун.

Для получения определенных характеристик в чугун часто вводят специальные примеси при его изготовлении. Такие материалы получили название легированные чугуны. В зависимости от добавленного элемента чугуны могут называться алюминиевыми, хромистыми, серными. В основном элементы вводят с целю получить износостойкий, жаропрочный, немагнитный и коррозионностойкий материал.

В данном видео будет приведено сравнение свойств чугуна и стали:

Тепловые свойства чугуна

У чугуна, как и у любого металла, присутствуют следующие свойства: тепловые, физические, механические, гидродинамические, электрические, технологические, химические. Каждые свойства рассмотрим подробнее.

Это видео рассказывается о структуре и составе чугунных сплавов и зависимости их свойств от определенного состава:

Теплоемкость

Тепловую емкость чугуна определяют с помощью правила смещения. Когда теплоемкость чугуна достигает температурного периода, начало которого начинается с температуры, значение которой больше фазовых превращений и заканчивается на отметке равной температуры плавления, то теплоемкость чугуна принимает значение 0,18 кал/Го С.

Если значение температуры плавления превышает абсолютное значение, то теплоемкость равна 0,23±0,03 кал/Го С. Если происходит процесс затвердения, то тепловой эффект равняется 55±5 кал. Тепловой эффект зависит от количества перлита, когда происходит перлитное превращение. Обычно он принимает значение 21,5±1,5кал/Г.

За величину объемной теплоемкости принимают произведение удельного веса на удельную теплоемкость. Для твердого чугуна эта величина составляет 1 кал/см 3 *ºС, для жидкого – 1,5 кал/см 3 *ºС.

Удельная теплоемкость чугуна и других металлов в виде таблицы

Теплопроводность

В отличие от теплоемкости, теплопроводность не определяется по правилу смещения. Только в случае изменения величины графитизации, на теплопроводность будет влиять состав чугуна.

Температуропроводность

Значение температуропроводности твердого чугуна (при крупных расчетах) может быть принята равной его теплопроводности, а жидкого чугуна – 0, 03 см 2* /сек.

О том, какую чугуны имеют температуру плавления, читайте ниже.

Температура плавления

Чугун плавится при температуре 1200ºС. Это значение температуры ниже температуры плавления стали на 300 градусов. При повышенном содержании углерода, этот химический элемент имеет на молекулярном уровне тесную связь с атомами железа.

В процессе плавления чугуна и его кристаллизации углеродная составляющая не может полностью пронизать структурную решетку железа. Вследствие этого материал чугун примеряет на себя свойство хрупкости. Чугун используют для деталей, от которых требуется повышенная прочность. Однако чугун не применяют при изготовлении предметов, на которые будут действовать постоянные динамические нагрузки.

В таблице ниже указана температура плавления чугуна в сравнении с другими металлами.

Температура плавления чугуна и других металлов

Распространение и применение чугуна

Чугун стал обширно применяться много лет назад. Это связано с тем, что материал довольно прост в производстве и обладает довольно привлекательными эксплуатационными качествами. Выделяют следующие разновидности этого материала:

  1. Высокопрочный: применяется при производстве изделий, которые должны обладать повышенной прочностью. Получается подобная структура за счет добавления в состав примеси магния. Отличается высокой устойчивостью к изгибу и другому воздействию, не связанному с переменными нагрузками.
  2. Ковкий чугун: обладает структурой, которая легко поддается ковке за счет высокой пластичности. Процесс производства предусматривает выполнения отжига.
  3. Половинчатый: обладает неоднородной структурой, которая во многом и определяет основные механические качества материала.

Удельный вес металлов

Для расчета веса или длины металлопроката по удельному весу нужной марки – существует специальный калькулятор металла.

См. также таблицы:

Удельный вес титана, никеля, цинка

Определение удельного веса металлов.

Современная наука уже давно шагнула вперед по сравнению с технологиями, которые использовались на заре развития тяжелой промышленности, и может предложить различные вариации сплавов металлов, отличающихся друг от друга не только по своим качественным характеристикам, но и по физико-химическим свойствам. Для того, чтобы определить, насколько тот или иной сплав черной или нержавеющий стали подходит для производства рассчитывается его удельный вес. Все тела, имеющие одинаковый объем, но произведенные из различных веществ, к примеру, из железа, латуни или алюминия, имеют различную массу, которая находится в прямой зависимости от его объема. Иными словами, отношение объема сплава к его массе является постоянной величиной, которая будет характерной для данного вещества. Плотность вещества рассчитывается по специальной формуле и имеет прямое отношение к расчету удельного веса металла.

Удельным весом металла называется отношение веса Р однородного тела из этого вещества к объему металла. Он обозначается γ. Тогда, согласно формуле удельный вес металлов расчитывается как:

Также не стоит забывать, что удельный вес металла есть сила тяжести непосредственно взятого за основу объема данного вещества.

Удельный вес металла и его плотность находятся в таком же соотношении друг к другу, как вес и масса тела, и поэтому удельный вес можно определить по формуле:

За единицу удельного веса металла (нержавеющей стали, латуни, чугуна, меди, бронзы и т.д.) принимается:

– в системе СГС —1 дин/см 3 ,

– в системе СИ — 1 н/м 3 ,

– в системе МКСС— 1 кГ/м 3 .

Все эти значения единицы связаны между собой соотношением

0,1 дин/см 3 = 1 н/м 3 = 0,102 кГ/м 3 .

При определении удельного веса металла также возможно использование внесистемной единицы 1 Г/см 3 .

Поскольку масса вещества, выраженная в г, равна его весовому значению, выраженному в Г, то удельный вес металла, выраженный в данных единицах, по своей численности равен плотности этого металла, которая будет выражена в системе СГС. Подобное же числовое равенство можно проследить и между удельным весом в системе МКСС и плотностью в системе СИ.

Таким образом, удельным весом металла называется вес единицы объема безусловного плотного (непористого) материала. Для обозначения удельного веса следует массу сухого материала поделить на его объем в полностью плотном состоянии – фактически это и есть формула определения веса металла. Для того, чтобы добиться подобного результата, металл необходимо привести в такое состояние, чтобы в его частицах не было пор, а структура была полностью однородной.

Все известные и применяемые в промышленности металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Существует несколько основополагающих критериев, уникализирующих тот или иной металл или сплав.

Особенности металлов и их качественные и весовые характеристики

Для того, чтобы более точно иметь представление о спецификациях каждого вида металлов необходимо определиться, что же все-таки понимается под данной группой веществ.

Металлами именуются вещества, обладающие характерными свойствами, среди которых можно назвать высокую прочность, тепло- и электропроводность, пластичность, особый металлический блеск, характерный для каждой группы. Металлические элементы входят в почти 3/4 всех известных в природе элементов, но не все могут находить широкое применение в промышленности. Некоторые из них в своем истинном состоянии и удельном весе встречаются достаточно редко. Из наиболее важных и ценных для технологических процессов и производства металлов лишь небольшая часть содержится в земной коре. Это железо, алюминий, магний, титан и т.д.

Удельный вес чугуна

Черные металлы (черная сталь, чугун) — техническое название железных сплавов и самого железа. В течение тысячелетий они были основополагающими в изготовлении орудий труда. Несмотря на стабильный рост продукции химической промышленности, цветной металлургии, тяжелой промышленности, чёрные металлы по-прежнему считаются главным конструкционным материалом во многих отраслях деятельности человека. По производственным объемам большинства важнейших видов изделий черной металлургии (железной руды, чугуна, стали, стальных труб, кокса, огнеупоров) Россия занимает достойное место лидера во всем мире. Черные металлы подразделяются на чугуны и стали в зависимости от содержания углерода и своего удельного веса.

Чугун — это сплав углерода с железом при содержании углерода более 2,13%. Чугун наделен небольшой способностью к пластической деформации и отличными литейными свойствами. В его составе содержатся графитовые включения — форма и размер которых определяют тип чугуна и его сферу его применения. Серый чугун — это материал, в котором углерод содержится в свободном состоянии в виде пластинчатого графита. Высокопрочный чугун содержит в своем составе углерод в форме шаровидного графита, и используется для изготовления деталей, которые в процессе эксплуатации подвергаются значительным механическим нагрузкам. Ковкий чугун может иметь повышенные характеристики пластичности, если его сравнивать с вышеуказанным чугуном. Он применяется в производстве деталей, где необходимы более высокие уровни механических свойств.

Удельный вес чугуна и его сплавов определяется весом одного его кубического сантиметра, который выражен в граммах. Чем больше показатель удельного веса металла, тем более тяжелым может получиться готовое изделие. В приведенной ниже таблице проиллюстрированы типичные физические свойства и удельный вес, характерный для определенных типов чугуна.

Так как существует большое количество марок стали, химический состав которых очень отличается, то все удельные веса стали вынесены в отдельную статью.

Цветные металлы

Цветные металлы представляют собой значимый и важный перечень веществ для металлургической промышленности. Но добыча их ограничена природными геологическими источниками и является длительным и трудоемким процессом. Использование лома данной категории металлов позволяет экономично и грамотно расходовать невосполнимые ресурсы страны, повышая этим производительность металлургической отрасли. Удельный вес металлов в чистом виде можно определять чаще всего в лабораторных условиях, но их натуральные качества весьма редко применяются в строительстве. Значительно чаще находится применение сплавам цветных металлов, которые по удельному весу подразделяют на легкие и тяжелые.

Легкие сплавы активно используются современной промышленностью, из-за их высокой прочности и хороших высокотемпературных механических свойств. Основными металлами подобных сплавов выступают титан, алюминий, магний и бериллий. Но сплавы, созданные на основе магния и алюминия, не могут использоваться в агрессивных средах и в условиях высокой температуры.

В основе тяжелых сплавов лежит медь, олово, цинк, свинец. Среди тяжелых сплавов во многих сферах промышленности применяют бронзу (сплав меди с алюминием, сплав меди с оловом, марганцем или железом) и латунь (сплав цинка и меди). Из этих сплавов производятся архитектурные детали и санитарно-техническая арматура.

Ниже приведены основные качественные характеристики и удельный вес наиболее распространенных цветных металлов.

Кроме необъемной группы легких металлов, таких как алюминий, магний, которые имеют удельный вес не более 3, большинство металлов может иметь значительный удельный вес отдельно. К примеру, благодаря большому удельному весу платины (21,45) и золота (19,32), встречающиеся в природном виде, они могут добываться при помощи метода отмывки от сравнительно легких частиц песка, глины, сопровождающих их в разных слоях почвы.

Малый удельный вес некоторых металлов имеет очень важное значение при строительстве и проектировании самолетов, и поэтому на данный момент легкие сплавы и их характеристики особенно тщательно изучаются.

Для расчета какого-либо металлопроката по удельному весу – для этого существует специальный калькулятор металла.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Плотность металлов и сплавов

В таблице представлена плотность металлов и сплавов, а также коэффициент К отношения их плотности к плотности стали. Плотность металлов и сплавов в таблице указана в размерности г/см 3 для интервала температуры от 0 до 50°С.

Дана плотность металлов, таких как: бериллий Be, ванадий V, висмут Bi, вольфрам W, галлий Ga, гафний Hf, германий Ge, золото Au, индий In, кадмий Cd, кобальт Co, литий Li, марганец Mn, магний Mg, медь Cu, молибден Mo, натрий Na, никель Ni, олово Sn, палладий Pd, платина Pt, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, свинец Pb, серебро Ag, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, титан Ti, хром Cr, цинк Zn, цирконий Zr.

Плотность алюминиевых сплавов и металлической стружки: алюминиевые сплавы: АЛ1, АЛ2, АЛ3, АЛ4, АЛ5, АЛ7, АЛ8, АЛ9, АЛ11, АЛ13, АЛ21, АЛ22, АЛ24, АЛ25. Насыпная плотность стружки: стружка алюминиевая мелкая дробленая, стальная мелкая, стальная крупная, чугунная. Примечание: плотность стружки в таблице дана в размерности т/м 3 .

Плотность сплавов магния и меди: магниевые сплавы деформируемые: МА1, МА2, МА2-1, МА8, МА14; магниевые сплавы литейные: МЛ3, МЛ4, МЛ6, МЛ10, МЛ11, МЛ12; медно-цинковые сплавы (латуни) литейные: ЛЦ16К4, ЛЦ23А6Ж3Мц2, ЛЦ30А3, ЛЦ38Мц2С2, ЛЦ40Сд, ЛЦ40С, ЛЦ40 Мц3Ж, ЛЦ25С2; медно-цинковые сплавы, обрабатываемые давлением: Л96, Л90, Л85, Л80, Л70, Л68, Л63, Л60, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2, ЛЖМц59-1-1, ЛН65-5, ЛМ-58-2, ЛМ-А57-3-1.

Плотность бронзы различных марок: бронзы безоловянные, обрабатываемые давлением: БрА5, 7, БрАМц9-2, БрАЖ9-4, БрАЖМц10-3-1,5, БрАЖН10-4-4, БрКМц3,1, БрКН1-3, БрМц5; бронзы бериллиевые: БрБ2, БрБНТ1,9, БрБНТ1,7; бронзы оловянные деформируемые: Бр0Ф8,0-0,3, Бр0Ф7-0,2, Бр0Ф6,5-0,4, Бр0Ф6,5-0,15, Бр0Ф4-0,25, Бр0Ц4-3, Бр0ЦС4-4-2,5, Бр0ЦС4-4-4; бронзы оловянные литейные: Бр03Ц12С5, Бр03Ц7С5Н1, Бр05Ц5С5; бронзы безоловянные литейные: БрА9Мц2Л, БрА9Ж3Л, БрА10Ж4Н4Л, БрС30.

Плотность сплавов никеля и цинка: никелевые и медно-никелевые сплавы, обрабатываемые давлением: НК0,2, НМц2,5, НМц5, НМцАК2-2-1, НХ9,5, МНМц43-0,5, НМЦ-40-1,5, МНЖМц30-1-1, МНЖ5-1, МН19, 16, МНЦ15-20, МНА 13-3, МНА6-1,5, МНМц3-12; цинковые сплавы антифрикционные: ЦАМ9-1,5Л, ЦАМ9-1,5, ЦАМ10-5Л, ЦАМ10-5.

Плотность стали, чугуна и баббитов: сталь конструкционная, стальное литье, сталь быстрорежущая с содержанием вольфрама 5…18%; чугун антифрикционный, ковкий и высокопрочный, чугун серый; баббиты оловянные и свинцовые: Б88, 83, 83С, Б16, БН, БС6.

Приведем показательные примеры плотности различных металлов и сплавов. По данным таблицы видно, что наименьшую плотность имеет металл литий, он считается самым легким металлом, плотность которого даже меньше плотности воды — плотность этого металла равна 0,53 г/см 3 или 530 кг/м 3 . А у какого металла наибольшая плотность? Металл, обладающий наибольшей плотностью — это осмий. Плотность этого редкого металла равна 22,59 г/см 3 или 22590 кг/м 3 .

Следует также отметить достаточно высокую плотность драгоценных металлов. Например, плотность таких тяжелых металлов, как платина и золото, соответственно равна 21,5 и 19,3 г/см 3 . Дополнительная информация по плотности и температуре плавления металлов представлена в этой таблице.

Сплавы также обладают широким диапазоном значений плотности. К легким сплавам относятся магниевые сплавы и сплавы алюминия. Плотность алюминиевых сплавов выше. К сплавам с высокой плотностью можно отнести медные сплавы такие, как латуни и бронзы, а также баббиты.

Источник:
Цветные металлы и сплавы. Справочник. Издательство «Вента-2». НН., 2001 — 279 с.

Какая плотность (удельный вес, объемный вес) у цементно песчаной стяжки кг м3

Для устройства пола и напольного покрытия применяется множество технологий и материалов, выбор которых зависит от назначения и условий эксплуатации помещения или объекта. Универсальным материалом для выполнения этого вида работ выступают цементно-песчаные растворы и бетоны.

При выборе следует учитывать различные характеристики материала для выравнивания, одной из которых является плотность цементно-песчаной стяжки в кг/м3. Этот показатель определяет общий вес стяжки и нагрузку на основание фундамента или межэтажных перекрытий, превышение которых может привести к снижению общей надежности здания.

Последовательность работы с цементной стяжкой.

СНиП цементно-песчаной стяжки

Цементно-песчаные растворы для выравнивания пола широко используются в промышленном, гражданском и индивидуальном строительстве. В последнем случае работы не всегда выполняются по проектной документации, а ответственность за выбор материалов и выполнение выравнивания основания часто принимают на себя владельцы, полагаясь на личный опыт, советы знакомых или информацию из интернета. Одним из вариантов защиты от возможных ошибок при отсутствии проекта может служить обращение к общедоступным нормативам строительной отрасли.

Требования к проектированию полов в зданиях различного назначения регламентирует документ СП 29.13330.2011 «Свод правил. Полы», в котором с учетом появления новых строительных материалов и технологий, введением дополнительных требований безопасности актуализированы правила применявшихся с 1988 г. СНиП 2.03.13-88 «Полы». Разделы свода правил определяют общие требования к конструктивному решению полов, а также к составляющим элементам: покрытию, прослойке, гидро- и пароизоляции, выполнению стяжки, подстилающего слоя, грунтам основания.

В качестве основных критериев для принятия технических решений СП 29.13330.2011 определяет характер и интенсивность механических воздействий на пол, интенсивность воздействия жидкостей или агрессивных сред, температурный режим эксплуатации, обеспечение санитарно-гигиенических требований. Для производственных помещений учитываются также специальные требования с учетом специфики объекта — возможность пылеобразования, накопления статических зарядов или искрообразования, способность к очистке и уборке.

Приведенная в тексте документа и в таблицах приложений информация может оказаться полезной и для индивидуальных застройщиков при выборе типа пола и его покрытия, материалов и выполнении работ, в т. ч. устройстве выравнивающей стяжки.

Плотность стяжки и удельный вес из цемента и песка

Для устройства цементно-песчаной стяжки (ЦПС) в зависимости от заданных условиями эксплуатации критериев могут использоваться различные виды материала, различающиеся по составу, показателям плотности и прочности:

  • бетон с тяжелым наполнителем;
  • бетон с легким наполнителем;
  • цементно-песчаный раствор;
  • сухие строительные смеси.

С тяжелым наполнителем — гранитный отсев

Наполнитель на основе отсева гранитного щебня является конечным продуктом производства товарного щебня с фракцией до 10 мм. Бетонная стяжка с гранитным наполнителем отличается высокой прочностью, морозостойкостью и применяется в промышленном строительстве. В гражданском и жилищном строительстве ее используют для помещений с высокими эксплуатационными нагрузками — для подвальных и цокольных этажей, гаражей, хозяйственных и складских пространств.

Плотность приготовленного с использованием гранитного отсева бетона составляет 1400-2200 кг/м³, что относит его к серии тяжелых. Объемный вес стяжки толщиной 5 см для указанного диапазона плотности составляет от 70 до 110 килограммов на на 1м2, что является весомой дополнительной нагрузкой на межэтажные перекрытия, полы с грунтовым или деревянным основанием.

Соотношение главных компонентов для растворов разной плотности.

Легкие типы растворов — перлит, полистирол, гранулы

Во многих случаях более эффективным будет использование легкой стяжки. Ее применяют в случаях, когда выравниванием устраняется большой перепад высот, при прокладке в полу трубопроводов и коммуникаций, а также когда стяжкой необходимо получить дополнительные тепло-, звукоизолирующие свойства пола.

Плотность легких растворов для стяжки составляет от 500 до 1800 кг/м³ в зависимости от типа заполнителя и наполнителя, их пропорции в составе смеси. По прочности легкая стяжка уступает смесям с тяжелым наполнителем, поэтому иногда ее используют в качестве промежуточного слоя с окончательным выравниванием более прочными растворами.

В качестве наполнителя для легкой стяжки применяется несколько материалов, добавление которых в массу смеси позволяет получить различные технические характеристики:

  1. Перлит — пористая горная порода, обладает хорошей тепло- и звукоизоляцией, высокой впитывающей способностью, огнестойкостью, химической инертностью. Для приготовления строительных бетонов и растворов используют полученный при термической обработке исходного сырья вспученный перлит с плотностью около 100 кг/м³, плотность смеси в зависимости от состава других компонентов составляет от 400 до 1000 кг/м³.
  2. Вермикулит — природный минерал со слоистой структурой, в строительстве применяют вспученную породу. В качестве наполнителя для растворов и бетонов обладает аналогичными перлиту свойствами и характеристиками.
  3. Керамзит с объемным весом от 150 до 800 кг/м³, получаемый обжигом глины или глинистого сланца. Его характеристиками являются высокая прочность, морозоустойчивость, химическая стойкость, негорючесть, экологичность. Керамзитовый щебень с фракцией до 10 мм применяется в качестве наполнителя или служит сырьем для приготовления керамзитового песка.
  4. Гранулированный пенополистирол (из полимерного сырья). Плотность ЦПС на его основе составляет от 150 до 600 кг/м³, они обладают высокой степенью звуко- и теплопоглощения, морозостойкости, но малой по сравнению с другими легкими растворами прочностью.

Минимальная и максимальная толщина стяжки

СП 29.13330.2011 дает четкие указания по минимальной толщине слоя стяжки для обеспечения необходимого уклона пола: при укладке по плитам перекрытия не менее 20 мм, при укладке на слой гидроизоляции, по тепло- и звукоизоляционному слою — не менее 40 мм. При укрытии трубопроводов (в т. ч. в системе теплого пола) толщина стяжки должна быть больше диаметра трубопроводов минимум на 45 мм. Меньшая толщина слоя может привести к растрескиванию и разрушению стяжки.

Рекомендуемая специалистами минимальная толщина слоя стяжки составляет 30 мм. Оптимальное значение стяжки составляет 40-50 мм, увеличение толщины влечет перерасход материала, ограничивается допустимой несущей способностью основания даже в случае использования легких стяжек, требует дополнительного усиления слоя армированием.

Цементно-песчаные смеси: состав, характеристики, марки, технология приготовления

  • Состав цементно-песчаных смесей
  • Виды ЦПС по назначению
  • Основные характеристики ЦПС
  • Марки цементно-песчаных растворов
  • Преимущества сухих цементно-песчаных смесей
  • Инструкция и рекомендации по самостоятельному приготовлению ЦПС

Цементно-песчаные смеси – строительные материалы, предназначенные для выполнения штукатурных, кладочных, монтажных работ, устройства стяжек пола. В чистом виде цемент применяется только для повышения прочности и износостойкости бетонных поверхностей, но при ведении остальных ремонтно-строительных работ вяжущее используется только в сочетании с песком. Это связано с тем, что раствор, полученный из воды и цемента, отличается сильной усадкой. Добавление песка предотвращает появление трещин на затвердевшем продукте.

Компоненты цементно-песчаных смесей

В состав цементно-песчаных смесей входят:

  • Портландцемент. При производстве строительных растворов используется цемент марок М400 и М500. Свежий цемент, пригодный к использованию, представляет собой мелкодисперсный сыпучий материал. При затворении водой цемент образует искусственный камень, прочность которого зависит от соотношения компонентов в смеси.
  • Песок. Для приготовления строительных растворов используют мелкий заполнитель, соответствующий требованиям ГОСТа 8736-2014. Это песок – карьерный сеяный или мытый, речной, очищенный от илистых включений.
  • Вода. Рекомендуется брать воду питьевого качества или воду, прошедшую лабораторные анализы на наличие примесей, которые могут негативно повлиять на качество конечного продукта.

Для придания пластинному раствору и/или затвердевшему цементно-песчаному слою требуемых характеристик в состав цементно-песчаных смесей вводят:

  • Пластификаторы. Повышают пластичность и подвижность раствора, а, следовательно, позволяют снизить водоцементное соотношение, удалить пузырьки воздуха, уменьшить риск трещинообразования.
  • Регуляторы скорости твердения. В зависимости от технической необходимости с их помощью ускоряют или замедляют скорость твердения.
  • Гидрорфобизирующие добавки. Повышают водонепроницаемость отвердевшего ЦПР.
  • Присадки, повышающие способность пластичной смеси удерживать воду, что необходимо при работе по водопоглощающим базовым слоям, таким как силикатный кирпич, пенобетон.
  • Пигменты. Их обычно добавляют в ЦПР декоративно-функционального назначения, приготовленные на базе белого цемента.

Виды цементно-песчаных смесей по функциональному назначению

По основному назначению растворы на базе ЦПС в соответствии с ГОСТом на следующие виды:

  • Кладочные. Для приготовления кладочных растворов, предназначенных для возведения стен из кирпича, используется песок, размер зерна которого не превышает 2,5 мм. Для кладки из бутового камня может использоваться пластичный материал, в котором величина зерен песка достигает 5 мм.
  • Монтажные, в том числе используемые при устройстве стяжки пола. Для заливки пола используются ЦПР не ниже марки М150. Такие пластичные продукты после затвердевания образуют слой с высокой водонепроницаемостью. Цементно-песчаные растворы (ЦПР) могут использоваться для стяжек толщиной не более 30 мм. Если их толщина превышает эту величину, то потребуется бетонная смесь.
  • Облицовочные. Это могут быть мелкодисперсные составы, позволяющие получать очень гладкую поверхность, или материалы с декоративными компонентами – мраморной или гранитной крошкой, кусочками слюды или стекла.
  • Штукатурные. При производстве штукатурных ЦПР используется песок с крупностью зерен до 2,5 мм, для накрывочного слоя – 1,25 мм. Требуемую марку раствора выбирают в зависимости от его функционального назначения. ЦПР М50 может использоваться только для окончательной отделки поверхности, М100 – для внутренних отделочных работ в комнатах с обычным уровнем влажности. Для отделки стен и потолков во влажных помещениях, а также оштукатуривания фасадов понадобится ЦПР марки не ниже М150.

Технические характеристики ЦПС и растворов на их основе

В соответствии с нормативной документацией цементно-песчаные растворы имеют следующие технические характеристики:

  • Плотность. ЦПР на плотных заполнителях относятся к категории тяжелых, их плотность – 1500-1800 кг/м3. Легкие ЦПР изготавливают на пористых заполнителях. Их плотность – до1500 кг/м3. Насыпной удельный вес сухих ЦПС составляет примерно 2,1 тонны/м3.
  • Содержание вяжущего. В нормальных смесях соотношение цемента к песку составляет примерно 1:4. Материалы с более высоким содержанием цемента называют жирными, с меньшим содержанием – обедненными.
  • Коэффициент теплопроводности. Обычный ЦПР имеет достаточно высокую теплопроводность – 1,2 Вт/м*К. Поэтому полы с цементно-песчаным слоем требуют дополнительного утепления.

Для цементно-песчаных растворов после твердения и набора марочной прочности характерны:

  • устойчивость к температурным перепадам, морозостойкость (конкретная величина зависит от марки);
  • устойчивость к влаге – для растворов марки М150 и выше;
  • хорошая адгезия ко многим базовым поверхностям – кирпичу, бетону, природному камню.

Марки цементно-песчаных растворов по прочности на сжатие

Прочность ЦПР определяется маркой ЦПС, которая зависит от пропорций вяжущего (цемента) и мелкого заполнителя (песка).

Таблица соотношения цемента и песка для приготовления растворов различных марок на основе ЦПС

Марка Пропорции компонентов Ц:П
Цемент М400 Цемент М500
М50 1:7,4
М75 1:5,4
М100 1:4,3 1:5,3
М150 1:3,25 1:3,9
М200 1:2,5 1:3

Марка прочности ЦПР определяет его области применения:

  • М50. Применяется в областях, не требующих от материала высокой прочности – для финишной отделки стен и потолков, ликвидации небольших трещин, щелей, выбоин.
  • М100. Используется в ремонтных работах, для оштукатуривания поверхности.
  • М150. Могут использоваться при проведении кладочных работ, для оштукатуривания внутренних и наружных поверхностей, устройства стяжек.
  • М200. Монтажно-кладочные растворы. Могут использоваться при возведении стен крупногабаритных объектов, устройстве стяжек с высокой нагрузочной способностью.

Преимущества применения сухих цементно-песчаных смесей

Рациональным вариантом является использование сухих смесей, изготовленных в заводских условиях с точно подобранным составом и строгой дозировкой компонентов.

Имеющиеся в продаже сухие цементно-песчаные смеси обеспечивают ряд преимуществ:

  • Точность рецептуры. Такие составы изготавливаются на автоматизированных линиях, что обеспечивает точную дозировку и прогнозируемые характеристики продукта. Качество используемых компонентов проверяется в заводской лаборатории.
  • Высокая скорость приготовления. На месте производства работ необходимо только затворить сухой порошок водой в количестве, указанном в инструкции, и перемешать с помощью строительного миксера. Среднее количество воды на 1 кг смеси – 0,2 л.

Наличие в составе полимерных добавок, улучшающих качество готовой продукции.

Норма расхода сухой ЦПС указывается на упаковке материала в инструкции по применению, средняя величина – 1,4-1,5 кг на создание слоя толщиной 1 мм площадью 1 м2.

Технология самостоятельного приготовления цементно-песчаных растворов

Если планируется самостоятельное приготовление ЦПР, то это можно сделать вручную или с использованием бетономешалки. Для приготовления смеси вручную необходима емкость, в которую насыпают сухие компоненты. Их перемешивают до получения однородной массы, в которую добавляют воду. Перемешивание продолжают до образования пластичного продукта, имеющего консистенцию густой сметаны.

Для приготовления большого объема продукта целесообразно использовать бетономешалку. Порядок механизированного процесса отличается от этапов приготовления раствора вручную:

  • В емкость заливают 0,5-0,7 от запланированного объема воды.
  • Вводят жидкие присадки, перемешивают.
  • Загружают полную порцию цемента и примерно половину рассчитанного количества песка, перемешивают.
  • Загружают остаток мелкого заполнителя, перемешивают, добавляют воду до получения пластичного продукта требуемой консистенции.
  • Рекомендации и правила приготовления цементно-песчаных растворов
  • При производстве ЦПР необходимо использовать только качественный цемент в пределах гарантированного срока годности, хранившийся в условиях, соответствующих нормативам. Если вяжущее немного слежалось, то рекомендуется увеличить его процентное содержание на 15-20 % от расчетной величины.
  • Замешивать необходимо только такой объем ЦПС, который можно использовать за 1-1,5 часа.
  • При расчете необходимого количества пластичной смеси необходимо учесть наличие трещин и выбоин. Если такие присутствуют, то в расчеты закладывают дополнительно 10-20 % материала.
  • Готовность смеси к использованию можно проверить с помощью мастерка. Если после его проведения по поверхности остается рваный след, то ЦПР слишком густой, если след растекается – слишком жидкий.

Удельный и объемный вес цемента

А вы знаете, что объемный и удельный вес цемента совершенно разные показатели? Для чего нужно понимать эти значения, где они могут пригодиться, как их применять на практике. Сегодня подробно расскажем.

Всем известно, что цемент, растворы и смеси с его содержанием применяются в строительных и отделочных работах. Поэтому, не лишне будет узнать, как рассчитать требуемую массу, например, для бетонной стяжки или для заливки надежного фундамента.

Существуют расчетные показатели, такие как объемный или удельный цементный вес. Они отличаются друг от друга. Удельная масса по факту всегда больше. На оба показателя влияет плотность стройматериала.

В свою очередь существуют факторы, которые меняют и плотность тоже:

  • срок изготовления;
  • тонкости технологии производства;
  • условия окружающей среды при хранении и перевозке.

Удельный вес цементной смеси

Удельный измеряется в кг на м3. В ходе стройки, неверно рассчитанное количество материала в итоге отразится на результате. Пострадают производительность и качество. Как узнать, сколько весит куб цемента? Удельный, как и всех сыпучих материалов вычисляется по формуле М(масса)/ V(объем). Производное масса/объем исчисляется в кг/м3.

Выше, в таблице, приведены расчеты наиболее используемых марок м400 и м500. По удельному весу они имеют показатель 1100 кг/м3. В условиях производства используется система, которая регулирует объемную массу цемента. С ее помощью можно получить требуемую величину, посредством внесения разных добавок (таких, как барий).

Удельный пескоцементной смеси равен 1700 кг/м3. Используется она для кирпичной кладки и оштукатуривания. Знание удельного поможет правильно отмерить пропорции состава и рассчитать нужное количество песчаного раствора. Не правильно подобранное соотношение, закончится, в конечном итоге разрушением готового полотна.

Имеет значение и срок «жизни» пескоцемента. Раствор должен быть израсходован за час. Потом он начнет застывать и работать с ним станет невозможно.

Расчет объемного веса цемента

Масса материала с воздухом внутри по отношению к занимаемому им же объему называется объемный вес цемента. Измеряется в килограммах на метр кубический.

При хранении на заводе делают аэрацию в силосах, что бы цемент был рассыпчатым. Исходя из этого, объемная масса выходит 1200 кг/м3. При транспортировке материал начинает слеживаться, плотность его повышается до значений 1500-1600 кг/м3.

В случае, если порошок долго лежит во влажном помещении, он начинает сам по себе схватываться, рабочие характеристики пропадают. Пользы от такого материала не будет — только выбросить.

Проверить плотность собственноручно — практически нереально. Хотя для производителей регламентировано среднее значение, которое они должны соблюдать – это 1300кг/м3.

Добавить плотности раствору возможно в процессе его замешивания. Досыпается крупный песок, как уплотнитель, потом средней величины, и заканчивают самым мелким. Таким образом плотность равна массе объема.

Таблицы для расчета веса и объема цемента

Зная сколько весит мешок цемента (25 и 50кг), значения легко можно пересчитать, применяя все ту же простую формулу М/V. В таблице приведены параметры массы и объема 1 куба цемента.

В следующей таблице расчет веса цементного раствора при замере ведрами на 10 л. Опираясь на эти данные, если потребуется можно вычислить вес литра цемента разделив значение на 10.

В нижеприведенной таблице отражено, сколько цемента в мешках уйдет на 1 куб раствора и какая масса состава получится. Данные приведены из расчета веса мешка цемента в 50кг.

Научившись вычислять удельный вес и объем, можно уже не боятся ошибиться в дальнейших расчетах. Вы будете точно знать сколько должно быть килограмм цемента по отношению к другим ингредиентам раствора.

Легко вычисляя вес цемента в 1 м3, всегда можно проконтролировать расход количества стройматериала, чтоб не потратить денежные средства зря, или я не прав?

Читайте также:
Причины падения давления в насосной станции
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: